Previous |  Up |  Next

Article

Title: On the complexity of some $\sigma$-ideals of $\sigma$-P-porous sets (English)
Author: Zajíček, Luděk
Author: Zelený, Miroslav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 44
Issue: 3
Year: 2003
Pages: 531-554
.
Category: math
.
Summary: Let $\bold P$ be a porosity-like relation on a separable locally compact metric space $E$. We show that the $\sigma$-ideal of compact $\sigma$-$\bold P$-porous subsets of $E$ (under some general conditions on $\bold P$ and $E$) forms a $\boldsymbol \Pi_{\bold 1}^{\bold 1}$-complete set in the hyperspace of all compact subsets of $E$, in particular it is coanalytic and non-Borel. Our general results are applicable to most interesting types of porosity. It is shown in the cases of the $\sigma$-ideals of $\sigma$-porous sets, $\sigma$-$\langle g \rangle$-porous sets, $\sigma$-strongly porous sets, $\sigma$-symmetrically porous sets and $\sigma$-strongly symmetrically porous sets. We prove a similar result also for $\sigma$-very porous sets assuming that each singleton of $E$ is very porous set. (English)
Keyword: $\sigma $-porous sets
Keyword: $\sigma $-ideal
Keyword: coanalytic sets
Keyword: Hausdorff metric
MSC: 28A05
MSC: 54H05
MSC: 54H25
idZBL: Zbl 1099.54029
idMR: MR2025819
.
Date available: 2009-01-08T19:30:58Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119407
.
Reference: [DP] Debs G., Preiss D.: private communication..
Reference: [DSR] Debs G., Saint-Raymond J.: Ensemblesboréliens d'unicité au sens large.Ann. Inst. Fourier (Grenoble) 37 3 217-239 (1987). MR 0916281
Reference: [EH] Evans M.J., Humke P.D.: Contrasting symmetric porosity and porosity.J. Appl. Anal. 4 1 19-41 (1998). Zbl 0922.26003, MR 1648939
Reference: [F] Foran J.: Continuous functions need not have $\sigma$-porous graphs.Real Anal. Exchange 11 194-203 (1985-86). Zbl 0607.26005, MR 0828490
Reference: [K$_1$] Kechris A.S.: Classical Descriptive Set Theory.Springer-Verlag, New York, 1995. Zbl 0819.04002, MR 1321597
Reference: [K$_2$] Kechris A.S.: On the concept of $\boldsymbol \Pi_{\bold 1}^{\bold 1}$-completeness.Proc. Amer. Math. Soc. 125 6 1811-1814 (1997). MR 1372034
Reference: [KL] Kechris A.S., Louveau A.: Descriptive Set Theory and the Structure of Sets of Uniqueness.London Math. Soc. Lecture Notes Series 128, Cambridge University Press, Cambridge, 1989. Zbl 0677.42009, MR 0953784
Reference: [KLW] Kechris A.S., Louveau A., Woodin W.H.: The structure of $\sigma$-ideals of compact sets.Trans. Amer. Math. Soc. 301 (1987), 263-288. Zbl 0633.03043, MR 0879573
Reference: [M] Michael E.: Topologies on spaces of subsets.Trans. Amer. Math. Soc. 71 (1951), 152-182. Zbl 0043.37902, MR 0042109
Reference: [Za$_1$] Zajíček L.: Sets of $\sigma$-porosity and $\sigma$-porosity $(q)$.Časopis Pěst. Mat. 101 (1976), 350-359. MR 0457731
Reference: [Za$_2$] Zajíček L.: Porosity and $\sigma$-porosity.Real Anal. Exchange 13 (1987-88), 314-350. MR 0943561
Reference: [Za$_3$] Zajíček L.: Products of non-$\sigma$-porous sets and Foran systems.Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 497-505. MR 1428780
Reference: [Za$_4$] Zajíček L.: Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces Czechoslovak Math. J..41 (116) (1991), 288-296. MR 1105445
Reference: [Zam] Zamfirescu T.: Nearly all convex bodies are smooth and strictly convex.Monatsh. Math. (1987), 57-62. Zbl 0607.52002, MR 0875352
Reference: [Ze] Zelený M.: unpublished manuscript..
Reference: [ZP] Zelený M., Pelant J.: The structure of the $\sigma$-ideal of $\sigma$-porous sets.submitted, available electronically under http://www.karlin.mff.cuni.cz/kma-preprints/. MR 2076859
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_44-2003-3_12.pdf 338.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo