| Title: | The structure of the $\sigma$-ideal of $\sigma$-porous sets (English) | 
| Author: | Zelený, Miroslav | 
| Author: | Pelant, Jan | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 45 | 
| Issue: | 1 | 
| Year: | 2004 | 
| Pages: | 37-72 | 
| . | 
| Category: | math | 
| . | 
| Summary: | We show a general method of construction of non-$\sigma$-porous sets in complete metric spaces. This method enables us to answer several open questions. We prove that each non-$\sigma$-porous Suslin subset of a topologically complete metric space contains a non-$\sigma$-porous closed subset. We show also a sufficient condition, which gives that a certain system of compact sets contains a non-$\sigma$-porous element. Namely, if we denote the space of all compact subsets of a compact metric space $E$ with the Vietoris topology by $\Cal K(E)$, then it is shown that each analytic subset of $\Cal K(E)$ containing all countable compact subsets of $E$ contains necessarily an element, which is a non-$\sigma$-porous subset of $E$. We show several applications of this result to problems from real and harmonic analysis (e.g. the existence of a closed non-$\sigma$-porous set of uniqueness for trigonometric series). Finally we investigate also descriptive properties of the $\sigma$-ideal of compact $\sigma$-porous sets. (English) | 
| Keyword: | $\sigma$-porosity | 
| Keyword: | descriptive set theory | 
| Keyword: | $\sigma$-ideal | 
| Keyword: | trigonometric series | 
| Keyword: | sets of uniqueness | 
| MSC: | 26E99 | 
| MSC: | 28A05 | 
| MSC: | 42A63 | 
| MSC: | 54H05 | 
| idZBL: | Zbl 1101.28001 | 
| idMR: | MR2076859 | 
| . | 
| Date available: | 2009-05-05T16:43:15Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119436 | 
| . | 
| Reference: | [Ba] Bari N.: Trigonometric Series.Moscow, 1961. Zbl 0154.06103, MR 0126115 | 
| Reference: | [BKL] Becker H., Kahane S., Louveau A.: Some complete $\AA$ sets in harmonic analysis.Trans. Amer. Math. Soc. 339 (1993), 1 323-336. MR 1129434 | 
| Reference: | [BKR] Bukovský L., Kholshchevnikova N.N., Repický M.: Thin sets of harmonic analysis and infinite combinatorics.Real Anal. Exchange 20 (1994-95), 2 454-509. MR 1348075 | 
| Reference: | [De] Debs G.: Private communication.. | 
| Reference: | [Do] Dolzhenko E.P.: Boundary properties of arbitrary functions.Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 3-14 (in Russian). MR 0217297 | 
| Reference: | [DSR] Debs G., Saint-Raymond J.: Ensembles boréliens d'unicité au sens large.Ann. Inst. Fourier (Grenoble) 37 (1987), 3 217-239. MR 0916281 | 
| Reference: | [Ka] Kaufman R.: Fourier transforms and descriptive set theory.Mathematika 31 (1984), 2 336-339. Zbl 0604.42009, MR 0804207 | 
| Reference: | [Ke] Kechris A.S.: Classical Descriptive Set Theory.Springer-Verlag, New York, 1995. Zbl 0819.04002, MR 1321597 | 
| Reference: | [KL] Kechris A.S., Louveau A.: Descriptive Set Theory and the Structure of Sets of Uniqueness.London Math. Soc. Lecture Notes Series 128, Cambridge University Press, Cambridge, 1989. Zbl 0677.42009, MR 0953784 | 
| Reference: | [KLW] Kechris A.S., Louveau A., Woodin W.H.: The structure of $\sigma$-ideals of compact sets.Trans. Amer. Math. Soc. 301 (1987), 1 263-288. Zbl 0633.03043, MR 0879573 | 
| Reference: | [La] Laczkovich M.: Analytic subgroups of the reals.Proc. Amer. Math. Soc. 126 (1998), 6 1783-1790. Zbl 0896.04002, MR 1443837 | 
| Reference: | [Lo] Loomis L.: The spectral characterization of a class of almost periodic functions.Ann. of Math. 72 (1960), 2 362-368. Zbl 0094.05801, MR 0120502 | 
| Reference: | [LP] Lindahl L.-A., Poulsen F.: Thin Sets in Harmonic Analysis.Marcel Dekker, New York, 1971. Zbl 0226.43006, MR 0393993 | 
| Reference: | [PS] Piatetski-Shapiro I.I.: On the problem of uniqueness expansion of a function in a trigonometric series.Moscov. Gos. Univ. Uchen. Zap., vol. 155, Mat. 5 (1952), 54-72. MR 0080201 | 
| Reference: | [R] Rogers C.A. et al.: Analytic Sets.Academic Press, London, 1980. Zbl 0589.54047, MR 0608794 | 
| Reference: | [Re] Reclaw I.: A note on the $\sigma$-ideal of $\sigma$-porous sets.Real Anal. Exchange 12 (1986-87), 2 455-457. Zbl 0656.26001, MR 0888722 | 
| Reference: | [So] Solecki S.: Covering analytic sets by families of closed sets.J. Symbolic Logic 59 (1994), 3 1022-1031. Zbl 0808.03031, MR 1295987 | 
| Reference: | [Šl] Šleich P.: Sets of type $H^{(s)}$ are $\sigma$-bilaterally porous.preprint (unpublished). | 
| Reference: | [Za$_1$] Zajíček L.: Sets of $\sigma$-porosity and $\sigma$-porosity $(q)$.Časopis Pěst. Mat. 101 (1976), 4 350-359. MR 0457731 | 
| Reference: | [Za$_2$] Zajíček L.: Porosity and $\sigma$-porosity.Real Anal. Exchange 13 (1987-88), 2 314-350. MR 0943561 | 
| Reference: | [Za$_3$] Zajíček L.: Small non-sigma-porous sets in topologically complete metric spaces.Colloq. Math. 77 (1998), 2 293-304. MR 1628994 | 
| Reference: | [Za$_4$] Zajíček L.: Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces.Czechoslovak Math. J. 41 (116) (1991), 288-296. MR 1105445 | 
| Reference: | [Za$_5$] Zajíček L.: An unpublished result of P. Sleich: sets of type $H^{(s)}$ are $\sigma$-bilaterally porous.Real Anal. Exchange 27 (2002), 1 363-372. MR 1887868 | 
| Reference: | [Ze$_1$] Zelený M.: Calibrated thin $\boldsymbol\Pi_{\bold 1}^{\bold 1}$ $\sigma$-ideals are $\boldsymbol G_{\delta}$.Proc. Amer. Math. Soc. 125 (1997), 10 3027-3032. MR 1415378 | 
| Reference: | [Ze$_2$] Zelený M.: On singular boundary points of complex functions.Mathematika 45 (1998), 1 119-133. MR 1644354 | 
| . |