Previous |  Up |  Next

Article

Title: Differentiability of weak solutions of nonlinear second order parabolic systems with quadratic growth and nonlinearity $q\ge 2$ (English)
Author: Fattorusso, Luisa
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 1
Year: 2004
Pages: 73-90
.
Category: math
.
Summary: Let $\Omega$ be a bounded open subset of $\Bbb R^n$, let $X=(x,t)$ be a point of $\Bbb R^n\times \Bbb R^N$. In the cylinder $Q=\Omega \times (-T,0)$, $T>0$, we deduce the local differentiability result $$ u \in L^2(-a,0,H^2(B(\sigma ),\Bbb R^N))\cap H^1(-a,0,L^2(B(\sigma ),\Bbb R^N)) $$ for the solutions $u$ of the class $L^q(-T,0,H^{1,q}(\Omega,\Bbb R^N))\cap C^{0,\lambda}(\bar Q,\Bbb R^N)$ ($0<\lambda<1$, $N$ integer $\ge1$) of the nonlinear parabolic system $$ -\sum_{i=1}^n D_i a^i (X,u,Du)+\dfrac {\partial u}{\partial t} = B^0(X,u,Du) $$ with quadratic growth and nonlinearity $q\ge 2$. This result had been obtained making use of the interpolation theory and an imbedding theorem of Gagliardo-Nirenberg type for functions $u$ belonging to $W^{1,q}\cap C^{0,\lambda}$. (English)
Keyword: differentiability of weak solution
Keyword: parabolic systems
Keyword: nonlinearity with $q>2$
MSC: 35D10
MSC: 35K40
MSC: 35K55
idZBL: Zbl 1098.35054
idMR: MR2076860
.
Date available: 2009-05-05T16:43:21Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119437
.
Reference: [1] Campanato S.: Sistemi ellittici in forma di divergenza. Regolarità all'interno.Quaderni Scuola Norm. Sup. Pisa, 1980. MR 0668196
Reference: [2] Campanato S.: Differentiability of the solutions of nonlinear elliptic systems with natural growth.Ann. Mat. Pura Appl. (4) 131 (1982). Zbl 0493.35022, MR 0681558
Reference: [3] Fattorusso L.: Sulla differenziabilità delle soluzioni di sistemi parabolici non lineari del secondo ordine ad andamento quadratico.Boll. Un. Mat. Ital. B (7) 1 (1987), 741-764.
Reference: [4] Fattorusso L., Marino M.: Differenziabilità locale per sistemi parabolici non lineari del secondo ordine con non linearità $q\ge 2$.Ricerche Mat. 41 1 (1992), 89-112. MR 1305346
Reference: [5] Fattorusso L.: Differenziabilità locale per sistemi parabolici non lineari del secondo ordine con non linearità $1<q<2$.Matematiche (Catania) 48 2 (1993), 331-347 (1994).
Reference: [6] Marino M., Maugeri M.: Differentiability of weak solutions of nonlinear parabolic systems with quadratic growth.Matematiche (Catania) 50 (1995), 2 361-377. Zbl 0907.35034, MR 1414643
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-1_5.pdf 268.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo