Previous |  Up |  Next

Article

Title: On $m$-sectorial Schrödinger-type operators with singular potentials on manifolds of bounded geometry (English)
Author: Milatovic, Ognjen
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 1
Year: 2004
Pages: 91-100
.
Category: math
.
Summary: We consider a Schrödinger-type differential expression $H_V=\nabla^*\nabla+V$, where $\nabla $ is a $C^{\infty}$-bounded Hermitian connection on a Hermitian vector bundle $E$ of bounded geometry over a manifold of bounded geometry $(M,g)$ with metric $g$ and positive $C^{\infty}$-bounded measure $d\mu$, and $V$ is a locally integrable section of the bundle of endomorphisms of $E$. We give a sufficient condition for $m$-sectoriality of a realization of $H_V$ in $L^2(E)$. In the proof we use generalized Kato's inequality as well as a result on the positivity of $u\in L^2(M)$ satisfying the equation $(\Delta _M+b)u=\nu $, where $\Delta _M$ is the scalar Laplacian on $M$, $b>0$ is a constant and $\nu\geq 0$ is a positive distribution on $M$. (English)
Keyword: Schrödinger operator
Keyword: $m$-sectorial
Keyword: manifold
Keyword: bounded geometry
Keyword: singular potential
MSC: 35J10
MSC: 35P05
MSC: 47B25
MSC: 58J05
MSC: 58J50
MSC: 81Q10
idZBL: Zbl 1127.35348
idMR: MR2076861
.
Date available: 2009-05-05T16:43:26Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119438
.
Reference: [1] Aubin T.: Some Nonlinear Problems in Riemannian Geometry.Springer-Verlag, Berlin, 1998. Zbl 0896.53003, MR 1636569
Reference: [2] Braverman M., Milatovic O., Shubin M.: Essential self-adjointness of Schrödinger type operators on manifolds.Russian Math. Surveys 57 4 (2002), 641-692. Zbl 1052.58027, MR 1942115
Reference: [3] Kato T.: Schrödinger operators with singular potentials.Israel J. Math. 13 (1972), 135-148. MR 0333833
Reference: [4] Kato T.: A second look at the essential selfadjointness of the Schrödinger operators.Physical reality and mathematical description, Reidel, Dordrecht, 1974, pp.193-201. MR 0477431
Reference: [5] Kato T.: On some Schrödinger operators with a singular complex potential.Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 5 (1978), 105-114. Zbl 0376.47021, MR 0492961
Reference: [6] Kato T.: Perturbation Theory for Linear Operators.Springer-Verlag, New York, 1980. Zbl 0836.47009
Reference: [7] Milatovic O.: Self-adjointness of Schrödinger-type operators with singular potentials on manifolds of bounded geometry.Electron. J. Differential Equations, No. 64 (2003), 8pp (electronic). Zbl 1037.58013, MR 1993772
Reference: [8] Reed M., Simon B.: Methods of Modern Mathematical Physics I, II: Functional Analysis. Fourier Analysis, Self-adjointness.Academic Press, New York e.a., 1975. MR 0751959
Reference: [9] Shubin M.A.: Spectral theory of elliptic operators on noncompact manifolds.Astérisque no. 207 (1992), 35-108. MR 1205177
Reference: [10] Taylor M.: Partial Differential Equations II: Qualitative Studies of Linear Equations.Springer-Verlag, New York e.a., 1996. MR 1395149
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-1_6.pdf 220.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo