Article
Keywords:
left conjugacy closed loop; multiplication group; nucleus
Summary:
A loop $Q$ is said to be left conjugacy closed (LCC) if the set $\{L_x; x \in Q\}$ is closed under conjugation. Let $Q$ be such a loop, let $\Cal L$ and $\Cal R$ be the left and right multiplication groups of $Q$, respectively, and let $\operatorname{Inn} Q$ be its inner mapping group. Then there exists a homomorphism $\Cal L \to \operatorname{Inn} Q$ determined by $L_x \mapsto R^{-1}_xL_x$, and the orbits of $[\Cal L, \Cal R]$ coincide with the cosets of $A(Q)$, the associator subloop of $Q$. All LCC loops of prime order are abelian groups.
References:
                        
[1] Basarab A.S.: 
Klass LK-lup. Matematicheskie issledovanija 120 (1991), 3-7. 
MR 1121425[3] Belousov V.D.: 
Osnovy teorii kvazigrupp i lup. Nauka, Moskva, 1967. 
MR 0218483[5] Drápal A.: 
Conjugacy closed loops and their multiplication groups. J. Algebra 272 (2004), 838-850. 
MR 2028083 | 
Zbl 1047.20049[6] Drápal A.: Structural interactions of conjugacy closed loops. submitted.
[7] Goodaire E.G., Robinson D.A.: 
A class of loops which are isomorphic to all loop isotopes. Canad. J. Math. 34 (1982), 662-672. 
MR 0663308 | 
Zbl 0467.20052[8] Kiechle H., Nagy G.P.: 
On the extension of involutorial Bol loops. Abh. Math. Sem. Univ. Hamburg 72 (2002), 235-250. 
MR 1941556 | 
Zbl 1016.20051[9] Kinyon M.K., Kunen K., Phillips J.D.: 
Diassociativity in conjugacy closed loops. Comm. Algebra 32 (2004), 767-786. 
MR 2101839 | 
Zbl 1077.20076[10] Kunen K.: 
The structure of conjugacy closed loops. Trans. Amer. Math. Soc. 352 (2000), 2889-2911. 
MR 1615991 | 
Zbl 0962.20048[11] Nagy P., Strambach K.: 
Loops as invariant sections in groups, and their geometry. Canad. J. Math. 46 (1994), 1027-1056. 
MR 1295130 | 
Zbl 0814.20055[12] Matievics I.: 
Geometries over universal left conjugacy closed quasifields. Geom. Dedicata 65 (1997), 127-133. 
MR 1451967 | 
Zbl 0881.51005[13] Soikis L.R.: 
O specialnych lupach. in Voprosy teorii kvazigrupp i lup (V.D. Belousov, ed.), Akademia Nauk Moldav. SSR, Kishinev, 1970, pp. 122-131. 
MR 0274626