Previous |  Up |  Next

Article

Title: On multiplication groups of left conjugacy closed loops (English)
Author: Drápal, Aleš
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 2
Year: 2004
Pages: 223-236
.
Category: math
.
Summary: A loop $Q$ is said to be left conjugacy closed (LCC) if the set $\{L_x; x \in Q\}$ is closed under conjugation. Let $Q$ be such a loop, let $\Cal L$ and $\Cal R$ be the left and right multiplication groups of $Q$, respectively, and let $\operatorname{Inn} Q$ be its inner mapping group. Then there exists a homomorphism $\Cal L \to \operatorname{Inn} Q$ determined by $L_x \mapsto R^{-1}_xL_x$, and the orbits of $[\Cal L, \Cal R]$ coincide with the cosets of $A(Q)$, the associator subloop of $Q$. All LCC loops of prime order are abelian groups. (English)
Keyword: left conjugacy closed loop
Keyword: multiplication group
Keyword: nucleus
MSC: 08A05
MSC: 20N05
idZBL: Zbl 1101.20035
idMR: MR2075271
.
Date available: 2009-05-05T16:44:41Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119452
.
Reference: [1] Basarab A.S.: Klass LK-lup.Matematicheskie issledovanija 120 (1991), 3-7. MR 1121425
Reference: [2] Basarab A.S.: IK-loops.Quasigroups and related systems 4 (1997), 1-7. Zbl 0945.20037, MR 1767513
Reference: [3] Belousov V.D.: Osnovy teorii kvazigrupp i lup.Nauka, Moskva, 1967. MR 0218483
Reference: [4] Bruck R.H.: A Survey of Binary Systems.Springer-Verlag, 1971. Zbl 0141.01401, MR 0093552
Reference: [5] Drápal A.: Conjugacy closed loops and their multiplication groups.J. Algebra 272 (2004), 838-850. Zbl 1047.20049, MR 2028083
Reference: [6] Drápal A.: Structural interactions of conjugacy closed loops.submitted.
Reference: [7] Goodaire E.G., Robinson D.A.: A class of loops which are isomorphic to all loop isotopes.Canad. J. Math. 34 (1982), 662-672. Zbl 0467.20052, MR 0663308
Reference: [8] Kiechle H., Nagy G.P.: On the extension of involutorial Bol loops.Abh. Math. Sem. Univ. Hamburg 72 (2002), 235-250. Zbl 1016.20051, MR 1941556
Reference: [9] Kinyon M.K., Kunen K., Phillips J.D.: Diassociativity in conjugacy closed loops.Comm. Algebra 32 (2004), 767-786. Zbl 1077.20076, MR 2101839
Reference: [10] Kunen K.: The structure of conjugacy closed loops.Trans. Amer. Math. Soc. 352 (2000), 2889-2911. Zbl 0962.20048, MR 1615991
Reference: [11] Nagy P., Strambach K.: Loops as invariant sections in groups, and their geometry.Canad. J. Math. 46 (1994), 1027-1056. Zbl 0814.20055, MR 1295130
Reference: [12] Matievics I.: Geometries over universal left conjugacy closed quasifields.Geom. Dedicata 65 (1997), 127-133. Zbl 0881.51005, MR 1451967
Reference: [13] Soikis L.R.: O specialnych lupach.in Voprosy teorii kvazigrupp i lup (V.D. Belousov, ed.), Akademia Nauk Moldav. SSR, Kishinev, 1970, pp. 122-131. MR 0274626
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-2_4.pdf 254.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo