| Title: | $n$-T-quasigroup codes with one check symbol and their error detection capabilities (English) | 
| Author: | Mullen, Gary L. | 
| Author: | Shcherbacov, Victor | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 45 | 
| Issue: | 2 | 
| Year: | 2004 | 
| Pages: | 321-340 | 
| . | 
| Category: | math | 
| . | 
| Summary: | It is well known that there exist some types of the most frequent errors made by human operators during transmission of data which it is possible to detect using a code with one check symbol. We prove that there does not exist an $n$-T-code that can detect all single, adjacent transposition, jump transposition, twin, jump twin and phonetic errors over an alphabet that contains 0 and  1. Systems that detect all single, adjacent transposition, jump transposition, twin, jump twin errors and almost all phonetic errors of the form $a0\rightarrow 1a$, $a\neq 0$, $a\neq 1$ over alphabets of different, and minimal size, are constructed. We study some connections between the properties of anti-commutativity and parastroph orthogonality of T-quasigroups. We also list possible errors of some types (jump transposition, twin error, jump twin error and phonetic error) that the system of the serial numbers of German banknotes cannot detect. (English) | 
| Keyword: | quasigroup | 
| Keyword: | $n$-ary quasigroup | 
| Keyword: | check character system | 
| Keyword: | code | 
| Keyword: | the system of the serial numbers of German banknotes | 
| MSC: | 20N05 | 
| MSC: | 20N15 | 
| MSC: | 94B60 | 
| MSC: | 94B65 | 
| idZBL: | Zbl 1099.94036 | 
| idMR: | MR2075280 | 
| . | 
| Date available: | 2009-05-05T16:45:30Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119461 | 
| . | 
| Reference: | [1] Beckley D.F.: An optimum system with modulo $11$.The Computer Bulletin 11 213-215 (1967). | 
| Reference: | [2] Belousov V.D.: Foundations of the Theory of Quasigroups and Loops.Nauka, Moscow, 1967 (in Russian). MR 0218483 | 
| Reference: | [3] Belousov V.D.: Elements of the Quasigroup Theory, A Special Course.Kishinev, 1981 (in Russian). | 
| Reference: | [4] Belousov V.D.: $n$-Ary Quasigroups.Shtiinta, Kishinev, 1972 (in Russian). MR 0354919 | 
| Reference: | [5] Belyavskaya G.B., Izbash V.I., Mullen G.L.: Check character systems using quasigroups, I and II.preprints. MR 2174275 | 
| Reference: | [6] Damm M.: Prüfziffersysteme über Quasigruppen.Diplomarbeit, Philipps-Universität Marburg, 1998. | 
| Reference: | [7] Dénes J., Keedwell A.D.: Latin Squares and their Applications.Académiai Kiadó, Budapest, 1974. MR 0351850 | 
| Reference: | [8] Ecker A., Poch G.: Check character systems.Computing 37/4 277-301 (1986). Zbl 0595.94012, MR 0869726 | 
| Reference: | [9] Gumm H.P.: A new class of check-digit methods for arbitrary number systems.IEEE Trans. Inf. Th. IT, 31 (1985), 102-105. Zbl 0557.94013 | 
| Reference: | [10] Kargapolov M.I., Merzlyakov Yu.I.: Foundations of Group Theory.Nauka, Moscow, 1977 (in Russian). Zbl 0508.20001, MR 0444748 | 
| Reference: | [11] Laywine Ch.L., Mullen G.L.: Discrete Mathematics using Latin Squares.John Wiley & Sons, Inc., New York, 1998. Zbl 0957.05002, MR 1644242 | 
| Reference: | [12] Mullen G.L., Shcherbacov V.: Properties of codes with one check symbol from a quasigroup point of view.Bul. Acad. Ştiinte Repub. Mold. Mat. 2002, no 3, pp.71-86. Zbl 1065.94021, MR 1991018 | 
| Reference: | [13] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767 | 
| Reference: | [14] Sade A.: Produit direct-singulier de quasigroupes othogonaux et anti-abeliens.Ann. Soc. Sci. Bruxelles, Ser. I, 74 (1960), 91-99. MR 0140599 | 
| Reference: | [15] Schulz R.-H.: Check Character Systems and Anti-symmetric Mappings.H. Alt (Ed.): Computational Discrete Mathematics, Lecture Notes in Comput. Sci. 2122, 2001, pp.136-147. Zbl 1003.94537, MR 1911586 | 
| Reference: | [16] Schulz R.-H.: Equivalence of check digit systems over the dicyclic groups of order $8$ and $12$.in J. Blankenagel & W. Spiegel, editor, Mathematikdidaktik aus Begeisterung für die Mathematik, pp.227-237, Klett Verlag, Stuttgart, 2000. Zbl 1011.94539 | 
| Reference: | [17] Verhoeff J.: Error Detecting Decimal Codes.Vol. 29, Math. Centre Tracts. Math. Centrum Amsterdam, 1969. Zbl 0267.94016, MR 0256770 | 
| . |