Previous |  Up |  Next

Article

Title: Note on the classification theorems of $g$-natural metrics on the tangent bundle of a Riemannian manifold $(M,g)$ (English)
Author: Abbassi, Mohamed Tahar Kadaoui
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 4
Year: 2004
Pages: 591-596
.
Category: math
.
Summary: In [7], it is proved that all $g$-natural metrics on tangent bundles of $m$-dimen\-sional Riemannian manifolds depend on arbitrary smooth functions on positive real numbers, whose number depends on $m$ and on the assumption that the base manifold is oriented, or non-oriented, respectively. The result was originally stated in [8] for the oriented case, but the smoothness was assumed and not explicitly proved. In this note, we shall prove that, both in the oriented and non-oriented cases, the functions generating the $g$-natural metrics are, in fact, smooth on the set of all nonnegative real numbers. (English)
Keyword: Riemannian manifold
Keyword: tangent bundle
Keyword: natural operation
Keyword: $g$-natural metric
Keyword: curvatures
MSC: 53A55
MSC: 53C07
MSC: 58A32
idZBL: Zbl 1097.53013
idMR: MR2103077
.
Date available: 2009-05-05T16:47:47Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119487
.
Reference: [1] Abbassi K.M.T., Sarih M.: On natural metrics on tangent bundles of Riemannian manifolds.to appear in Arch. Math. (Brno). Zbl 1114.53015, MR 2142144
Reference: [2] Abbassi K.M.T., Sarih M.: The Levi-Civita connection of Riemannian natural metrics on the tangent bundle of an oriented Riemannian manifold.preprint.
Reference: [3] Abbassi K.M.T., Sarih M.: On some hereditary properties of Riemannian $g$-natural metrics on tangent bundles of Riemannian manifolds.to appear in Differential Geom. Appl. (2004). Zbl 1068.53016, MR 2106375
Reference: [4] Calvo M. del C., Keilhauer G.G.R: Tensor fields of type $(0,2)$ on the tangent bundle of a Riemannian manifold.Geom. Dedicata 71 (2) (1998), 209-219. MR 1629795
Reference: [5] Dombrowski P.: On the geometry of the tangent bundle.J. Reine Angew. Math. 210 (1962), 73-82. Zbl 0105.16002, MR 0141050
Reference: [6] Kobayashi S., Nomizu K.: Foundations of Differential Geometry.Interscience Publishers, New York (I, 1963 and II, 1967). Zbl 0526.53001, MR 0152974
Reference: [7] Kolář I., Michor P.W., Slovák J.: Natural Operations in Differential Geometry.Springer, Berlin, 1993. MR 1202431
Reference: [8] Kowalski O., Sekizawa M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - a classification.Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1-29. Zbl 0656.53021, MR 0974641
Reference: [9] Krupka D., Janyška J.: Lectures on Differential Invariants.University J.E. Purkyně, Brno, 1990. MR 1108622
Reference: [10] Nijenhuis A.: Natural bundles and their general properties.in Differential Geometry in Honor of K. Yano, Kinokuniya, Tokyo, 1972, pp.317-334. Zbl 0246.53018, MR 0380862
Reference: [11] Sasaki S.: On the differential geometry of tangent bundles of Riemannian manifolds.Tohôku Math. J., I, 10 (1958), 338-354 II, 14 (1962), 146-155. Zbl 0109.40505, MR 0112152
Reference: [12] Willmore T.J.: An Introduction to Differential Geometry.Oxford Univ. Press, Oxford, 1959. Zbl 0086.14401, MR 0159265
Reference: [13] Yano K., Ishihara S.: Tangent and Cotangent Bundles: Differential Geometry.Marcel Dekker Inc., New York, 1973. Zbl 0262.53024, MR 0350650
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-4_3.pdf 193.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo