Previous |  Up |  Next

Article

Title: A critical point result for non-differentiable indefinite functionals (English)
Author: Marano, Salvatore A.
Author: Motreanu, Dumitru
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 4
Year: 2004
Pages: 663-679
.
Category: math
.
Summary: In this paper, two deformation lemmas concerning a family of indefinite, non necessarily continuously differentiable functionals are proved. A critical point theorem, which extends the classical result of Benci-Rabinowitz [14, Theorem 5.29] to the above-mentioned setting, is then deduced. (English)
Keyword: locally Lipschitz continuous and indefinite functionals
Keyword: deformation lemmas
Keyword: critical point theorems
MSC: 35A15
MSC: 47J30
MSC: 49J35
MSC: 49J52
MSC: 58E05
idZBL: Zbl 1107.49005
idMR: MR2103082
.
Date available: 2009-05-05T16:48:15Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119492
.
Reference: [1] Barletta G.: Applications of a critical point result for non-differentiable indefinite functionals.preprint.
Reference: [2] Barletta G., Marano S.A.: Some remarks on critical point theory for locally Lipschitz functions.Glasgow Math. J. 45 (2003), 131-141. Zbl 1101.58009, MR 1972703
Reference: [3] Bartolo P., Benci V., Fortunato D.: Abstract critical point theorems and applications to some nonlinear problems with ``strong'' resonance at infinity.Nonlinear Anal. 7 (1983), 981-1012. Zbl 0522.58012, MR 0713209
Reference: [4] Benci V., Rabinowitz P.H.: Critical point theorems for indefinite functionals.Invent. Math. 52 (1979), 241-273. Zbl 0465.49006, MR 0537061
Reference: [5] Chabrowski J.: Variational Methods for Potential Operator Equations.de Gruyter Ser. Nonlinear Anal. Appl. 24, de Gruyter, Berlin, 1997. Zbl 1157.35338, MR 1467724
Reference: [6] Chang K.-C.: Variational methods for non-differentiable functionals and their applications to partial differential equations.J. Math. Anal. Appl. 80 (1981), 102-129. Zbl 0487.49027, MR 0614246
Reference: [7] Clarke F.H.: Optimization and Nonsmooth Analysis.Classics in Applied Mathematics 5, SIAM, Philadelphia, 1990. Zbl 0696.49002, MR 1058436
Reference: [8] Costa D.G., Magalh aes C.: A unified approach to a class of strongly indefinite functionals.J. Differential Equations 125 (1996), 521-547. MR 1378765
Reference: [9] Ding Y.: A remark on the linking theorem with applications.Nonlinear Anal. 22 (1994), 237-250. Zbl 0798.58014, MR 1258960
Reference: [10] Du Y.: A deformation lemma and some critical point theorems.Bull. Austral. Math. Soc. 43 (1991), 161-168. Zbl 0714.58008, MR 1086730
Reference: [11] Ghoussoub N.: Duality and Perturbation Methods in Critical Point Theory.Cambridge Tracts in Math. 107, Cambridge Univ. Press, Cambridge, 1993. Zbl 1143.58300, MR 1251958
Reference: [12] Hofer H.: On strongly indefinite functionals with applications.Trans. Amer. Math. Soc. 275 (1983), 185-214. Zbl 0524.58010, MR 0678344
Reference: [13] Motreanu D., Varga C.: Some critical point results for locally Lipschitz functionals.Comm. Appl. Nonlinear Anal. 4 (1997), 17-33. MR 1460105
Reference: [14] Rabinowitz P.H.: Minimax methods in critical point theory with applications to differential equations.CBMS Reg. Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, 1986. Zbl 0609.58002, MR 0845785
Reference: [15] Struwe M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems.Second Edition, Ergeb. Math. Grenzgeb. (3) 34, Springer Verlag, Berlin, 1996. MR 1411681
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-4_8.pdf 265.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo