Previous |  Up |  Next

Article

Title: On a selection theorem of Blum and Swaminathan (English)
Author: Yamauchi, Takamitsu
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 4
Year: 2004
Pages: 681-691
.
Category: math
.
Summary: Blum and Swaminathan [Pacific J. Math. 93 (1981), 251--260] introduced the notion of $\Cal B$-fixedness for set-valued mappings, and characterized realcompactness by means of continuous selections for Tychonoff spaces of non-measurable cardinal. Using their method, we obtain another characterization of realcompactness, but without any cardinal assumption. We also characterize Dieudonné completeness and Lindelöf property in similar formulations. (English)
Keyword: set-valued mapping
Keyword: selection
Keyword: realcompact
Keyword: Dieudonné complete
Keyword: Lindelöf
Keyword: $\Cal B$-fixed
Keyword: local intersection property
Keyword: open lower sections
MSC: 54C60
MSC: 54C65
MSC: 54D20
MSC: 54D60
idZBL: Zbl 1098.54017
idMR: MR2103083
.
Date available: 2009-05-05T16:48:20Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119493
.
Reference: [1] Aló R.A., Shapiro H.L.: Normal Topological Spaces.Cambridge University Press, New York-London, 1974. MR 0390985
Reference: [2] Blum I., Swaminathan S.: Continuous selections and realcompactness.Pacific J. Math. 93 (1981), 251-260. Zbl 0457.54012, MR 0623561
Reference: [3] De Marco G., Wilson R.G.: Realcompactness and partitions of unity.Proc. Amer. Math. Soc. 30 (1971), 189-194. MR 0281155
Reference: [4] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [5] Gillman L., Jerison M.: Rings of Continuous Functions.D. Van Nostrand Co., Inc., Princeton, NJ.-Toronto-London-New York, 1960. Zbl 0327.46040, MR 0116199
Reference: [6] Michael E.: Continuous selection I.Ann. Math. 63 (1956), 361-382. MR 0077107
Reference: [7] Michael E.: A theorem on semi-continuous set-valued functions.Duke Math. J. 26 (1959), 647-651. Zbl 0151.30805, MR 0109343
Reference: [8] Nedev S.: Selection and factorization theorems for set-valued mappings.Serdica 6 (1980), 291-317. Zbl 0492.54006, MR 0644284
Reference: [9] Repovš D., Semenov P.V.: Continuous selections of multivalued mappings.Kluwer Acad. Publ., Dordrecht, 1998. MR 1659914
Reference: [10] Tamano H.: On compactifications.J. Math. Kyoto Univ. 1 (1962), 162-193. Zbl 0106.15601, MR 0142096
Reference: [11] Wiscamb M.R.: The discrete countable chain condition.Proc. Amer. Math. Soc. 23 (1969), 608-612. Zbl 0184.26304, MR 0248744
Reference: [12] Wu X., Shen S.: A further generalization of Yannelis-Prabhakar's continuous selection theorem and its applications.J. Math. Anal. Appl. 197 (1996), 61-74. Zbl 0852.54019, MR 1371276
Reference: [13] Yannelis N.C., Prabhakar N.D.: Existence of maximal elements and equilibria in linear topological spaces.J. Math. Econom. 12 (1983), 233-245. Zbl 0536.90019, MR 0743037
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-4_9.pdf 233.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo