Previous |  Up |  Next

Article

Title: Integro-differential-difference equations associated with the Dunkl operator and entire functions (English)
Author: Salem, Néjib Ben
Author: Kallel, Samir
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 4
Year: 2004
Pages: 699-725
.
Category: math
.
Summary: In this work we consider the Dunkl operator on the complex plane, defined by $$ \Cal D_k f(z)=\frac{d}{dz}f(z)+k\frac{f(z)-f(-z)}{z}, k\geq 0. $$ We define a convolution product associated with $\Cal D_k$ denoted $\ast_k$ and we study the integro-differential-difference equations of the type $\mu \ast_k f=\sum_{n=0}^{\infty}a_{n,k}\Cal D^n_k f$, where $(a_{n,k})$ is a sequence of complex numbers and $\mu $ is a measure over the real line. We show that many of these equations provide representations for particular classes of entire functions of exponential type. (English)
Keyword: Dunkl operator
Keyword: Fourier-Dunkl transform
Keyword: entire function of exponential type
Keyword: integro-differential-difference equation
MSC: 30D05
MSC: 30D15
MSC: 33E30
MSC: 34K99
MSC: 34M05
MSC: 44A35
MSC: 45J05
idZBL: Zbl 1098.30019
idMR: MR2103085
.
Date available: 2009-05-05T16:48:31Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119495
.
Reference: [1] Ben Salem N., Kallel S.: Mean-periodic functions associated with the Dunkl operators.Integral Transforms Spec. Funct. 15 2 155-179 (2004). Zbl 1130.42009, MR 2053408
Reference: [2] Ben Salem N., Masmoudi W.: Integro-differential equations associated with the Bessel operator on the complex domain.C.R. Math. Rep. Acad. Sci. Canada 18 6 257-262 (1996). Zbl 0880.45008, MR 1441647
Reference: [3] Boas R.P., Jr.: Entire Functions.Academic Press, New York, 1954. Zbl 0293.30026, MR 0068627
Reference: [4] Dunkl C.F.: Differential difference operators associated to reflection groups.Trans. Amer. Math. Soc. 311 167-183 (1989). Zbl 0652.33004, MR 0951883
Reference: [5] Dunkl C.F.: Integral kernels with reflection group invariance.Canad. J. Math. 43 1213-1227 (1991). Zbl 0827.33010, MR 1145585
Reference: [6] de Jeu M.F.E.: The Dunkl transform.Invent. Math. 113 147-162 (1993). Zbl 0789.33007, MR 1223227
Reference: [7] Martineau A.: Sur les fonctionnelles analytiques et la transformation de Fourier-Borel.J. Analyse Math. 1-64 (1963). Zbl 0124.31804, MR 0159220
Reference: [8] Mourou M.A.: Taylor series associated with a differential-difference operator on the real line.J. Comput. Appl. Math. 153 343-354 (2003). Zbl 1028.34058, MR 1985705
Reference: [9] Mugler D.H.: Convolution, differential equations, and entire function of exponential type.Trans. Amer. Math. Soc. 216 145-187 (1976). MR 0387587
Reference: [10] Rosenblum M.: Generalized Hermite Polynomials and the Bose-like Oscillator Calculus.in: Operator Theory: Advances and Applications, vol. 73, Birkhäuser Verlag, Basel, 1994, pp.369-396. MR 1320555
Reference: [11] Rösler M.: Bessel-type signed hypergroups on $\Bbb R$.Probability Measures on Groups and Related Structures XI, Proceedings, Oberwollach, 1994 (H. Heyer and A. Mukherjea, Eds.), World Sci. Publishing, Singapore, 1995. MR 1414942
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-4_11.pdf 335.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo