Title:
|
Integro-differential-difference equations associated with the Dunkl operator and entire functions (English) |
Author:
|
Salem, Néjib Ben |
Author:
|
Kallel, Samir |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
45 |
Issue:
|
4 |
Year:
|
2004 |
Pages:
|
699-725 |
. |
Category:
|
math |
. |
Summary:
|
In this work we consider the Dunkl operator on the complex plane, defined by $$ \Cal D_k f(z)=\frac{d}{dz}f(z)+k\frac{f(z)-f(-z)}{z}, k\geq 0. $$ We define a convolution product associated with $\Cal D_k$ denoted $\ast_k$ and we study the integro-differential-difference equations of the type $\mu \ast_k f=\sum_{n=0}^{\infty}a_{n,k}\Cal D^n_k f$, where $(a_{n,k})$ is a sequence of complex numbers and $\mu $ is a measure over the real line. We show that many of these equations provide representations for particular classes of entire functions of exponential type. (English) |
Keyword:
|
Dunkl operator |
Keyword:
|
Fourier-Dunkl transform |
Keyword:
|
entire function of exponential type |
Keyword:
|
integro-differential-difference equation |
MSC:
|
30D05 |
MSC:
|
30D15 |
MSC:
|
33E30 |
MSC:
|
34K99 |
MSC:
|
34M05 |
MSC:
|
44A35 |
MSC:
|
45J05 |
idZBL:
|
Zbl 1098.30019 |
idMR:
|
MR2103085 |
. |
Date available:
|
2009-05-05T16:48:31Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119495 |
. |
Reference:
|
[1] Ben Salem N., Kallel S.: Mean-periodic functions associated with the Dunkl operators.Integral Transforms Spec. Funct. 15 2 155-179 (2004). Zbl 1130.42009, MR 2053408 |
Reference:
|
[2] Ben Salem N., Masmoudi W.: Integro-differential equations associated with the Bessel operator on the complex domain.C.R. Math. Rep. Acad. Sci. Canada 18 6 257-262 (1996). Zbl 0880.45008, MR 1441647 |
Reference:
|
[3] Boas R.P., Jr.: Entire Functions.Academic Press, New York, 1954. Zbl 0293.30026, MR 0068627 |
Reference:
|
[4] Dunkl C.F.: Differential difference operators associated to reflection groups.Trans. Amer. Math. Soc. 311 167-183 (1989). Zbl 0652.33004, MR 0951883 |
Reference:
|
[5] Dunkl C.F.: Integral kernels with reflection group invariance.Canad. J. Math. 43 1213-1227 (1991). Zbl 0827.33010, MR 1145585 |
Reference:
|
[6] de Jeu M.F.E.: The Dunkl transform.Invent. Math. 113 147-162 (1993). Zbl 0789.33007, MR 1223227 |
Reference:
|
[7] Martineau A.: Sur les fonctionnelles analytiques et la transformation de Fourier-Borel.J. Analyse Math. 1-64 (1963). Zbl 0124.31804, MR 0159220 |
Reference:
|
[8] Mourou M.A.: Taylor series associated with a differential-difference operator on the real line.J. Comput. Appl. Math. 153 343-354 (2003). Zbl 1028.34058, MR 1985705 |
Reference:
|
[9] Mugler D.H.: Convolution, differential equations, and entire function of exponential type.Trans. Amer. Math. Soc. 216 145-187 (1976). MR 0387587 |
Reference:
|
[10] Rosenblum M.: Generalized Hermite Polynomials and the Bose-like Oscillator Calculus.in: Operator Theory: Advances and Applications, vol. 73, Birkhäuser Verlag, Basel, 1994, pp.369-396. MR 1320555 |
Reference:
|
[11] Rösler M.: Bessel-type signed hypergroups on $\Bbb R$.Probability Measures on Groups and Related Structures XI, Proceedings, Oberwollach, 1994 (H. Heyer and A. Mukherjea, Eds.), World Sci. Publishing, Singapore, 1995. MR 1414942 |
. |