Previous |  Up |  Next

Article

Title: Nonreciprocal algebraic numbers of small measure (English)
Author: Dubickas, Artūras
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 45
Issue: 4
Year: 2004
Pages: 693-697
.
Category: math
.
Summary: The main result of this paper implies that for every positive integer $d\geqslant 2$ there are at least $(d-3)^2/2$ nonconjugate algebraic numbers which have their Mahler measures lying in the interval $(1,2)$. These algebraic numbers are constructed as roots of certain nonreciprocal quadrinomials. (English)
Keyword: Mahler measure
Keyword: quadrinomials
Keyword: irreducibility
Keyword: nonreciprocal numbers
MSC: 11R06
MSC: 11R09
idZBL: Zbl 1127.11070
idMR: MR2103084
.
Date available: 2009-05-05T16:48:25Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119494
.
Reference: [1] Boyd D.W.: Perron units which are not Mahler measures.Ergodic Theory Dynam. Systems 6 (1986), 485-488. Zbl 0591.12003, MR 0873427
Reference: [2] Boyd D.W., Montgomery H.L.: Cyclotomic Partitions.Number Theory (R.A. Mollin, ed.), Walter de Gruyter, Berlin, 1990, pp.7-25. Zbl 0697.10040, MR 1106647
Reference: [3] Chern S.J., Vaaler J.D.: The distribution of values of Mahler's measure.J. Reine Angew. Math. 540 (2001), 1-47. Zbl 0986.11017, MR 1868596
Reference: [4] Dixon J.D., Dubickas A.: The values of Mahler measures.Mathematika, to appear. Zbl 1107.11044, MR 2220217
Reference: [5] Dubickas A.: Algebraic conjugates outside the unit circle.New Trends in Probability and Statistics Vol. 4: Analytic and Probabilistic Methods in Number Theory (A. Laurinčikas et al., eds.), Palanga, 1996, TEV Vilnius, VSP Utrecht, 1997, pp.11-21. Zbl 0923.11146, MR 1653596
Reference: [6] Dubickas A., Konyagin S.V.: On the number of polynomials of bounded measure.Acta Arith. 86 (1998), 325-342. Zbl 0926.11080, MR 1659085
Reference: [7] Ljunggren W.: On the irreducibility of certain trinomials and quadrinomials.Math. Scand. 8 (1960), 65-70. Zbl 0095.01305, MR 0124313
Reference: [8] Mignotte M.: Sur les nombres algébriques de petite mesure.Comité des Travaux Historiques et Scientifiques: Bul. Sec. Sci. 3 (1981), 65-80. Zbl 0467.12008, MR 0638732
Reference: [9] Mignotte M.: On algebraic integers of small measure.Topics in Classical Number Theory, Budapest, 1981, vol. II (G. Halász, ed.), Colloq. Math. Soc. János Bolyai 34 (1984), 1069-1077. Zbl 0543.12002, MR 0781176
Reference: [10] Schinzel A.: Polynomials with Special Regard to Reducibility.Encyclopedia of Mathematics and its Applications 77, Cambridge University Press, 2000. Zbl 0956.12001, MR 1770638
Reference: [11] Smyth C.J.: On the product of the conjugates outside the unit circle of an algebraic integer.Bull. London Math. Soc. 3 (1971), 169-175. Zbl 0235.12003, MR 0289451
Reference: [12] Smyth C.J.: Topics in the theory of numbers.Ph.D. Thesis, University of Cambridge, 1972.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_45-2004-4_10.pdf 179.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo