Previous |  Up |  Next

Article

Title: Fixed point theorems for $n$-periodic mappings in Banach spaces (English)
Author: Górnicki, Jarosław
Author: Pupka, Krzysztof
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 1
Year: 2005
Pages: 33-42
.
Category: math
.
Summary: Using modified Halpern iterations, by elementary method, we extend and improve results obtained by W.A. Kirk (Proc. Amer. Math. Soc. {\bf 29} (1971), 294) and others, which have recently been presented in Chapter 11 of {\it Handbook of Metric Fixed Point Theory\/} (2001). (English)
Keyword: lipchitzian mapping
Keyword: uniformly lipschitzian mapping
Keyword: $n$-periodic mapping
Keyword: fixed point
MSC: 47H09
MSC: 47H10
idZBL: Zbl 1123.47038
idMR: MR2175857
.
Date available: 2009-05-05T16:49:23Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119506
.
Reference: [1] Goebel K.: Convexity of balls and fixed point theorems for mappings with nonexpansive square.Compositio Math. 22 (1970), 269-274. Zbl 0202.12802, MR 0273477
Reference: [2] Goebel K., Kirk W.A.: A fixed point theorem for transformations whose iterates have uniform Lipschitz constant.Studia Math. 47 (1973), 135-140. Zbl 0265.47044, MR 0336468
Reference: [3] Goebel K., Złotkiewicz E.: Some fixed point theorems in Banach spaces.Colloquium Math. 23 (1971), 103-106. MR 0303367
Reference: [4] Górnicki J.: Fixed points of involutions.Math. Japonica 43 1 (1996), 151-155. MR 1373993
Reference: [5] Halpern B.: Fixed points of nonexpansive maps.Bull. Amer. Math. Soc. 73 (1967), 957-961. MR 0218938
Reference: [6] Kim T.H., Kirk W.A.: Fixed point theorems for lipschitzian mappings in Banach spaces.Nonlinear Anal. 26 (1996), 1905-1911. Zbl 0856.47031, MR 1386122
Reference: [7] Kirk W.A.: A fixed point theorem for mappings with a nonexpansive iterate.Proc. Amer. Math. Soc. 29 (1971), 294-298. Zbl 0213.41303, MR 0284887
Reference: [8] Kirk W.A., Sims B. (Eds.): Handbook of Metric Fixed Point Theory.Kluwer Acad. Pub., Dordrecht-Boston-London, 2001. Zbl 0970.54001, MR 1904271
Reference: [9] Linhart J.: Fixpunkte von Involutionen n-ter Ordnung.Österreich. Akad., Wiss. Math.-Natur., kl. II, 180 (1973), 89-93. Zbl 0244.47041, MR 0303369
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-1_4.pdf 202.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo