Previous |  Up |  Next

Article

Title: A remark on a theorem of Solecki (English)
Author: Holický, P.
Author: Zajíček, L.
Author: Zelený, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 1
Year: 2005
Pages: 43-54
.
Category: math
.
Summary: S. Solecki proved that if $\Cal F$ is a system of closed subsets of a complete separable metric space $X$, then each Suslin set $S\subset X$ which cannot be covered by countably many members of $\Cal F$ contains a $\boldsymbol G_{\delta}$ set which cannot be covered by countably many members of $\Cal F$. We show that the assumption of separability of $X$ cannot be removed from this theorem. On the other hand it can be removed under an extra assumption that the $\sigma $-ideal generated by $\Cal F$ is locally determined. Using Solecki's arguments, our result can be used to reprove a Hurewicz type theorem due to Michalewski and Pol, and a nonseparable version of Feng's theorem due to Chaber and Pol. (English)
Keyword: Solecki's theorem
Keyword: Suslin set
Keyword: $\sigma$-ideal
MSC: 03E15
MSC: 28A05
MSC: 54H05
idZBL: Zbl 1121.03058
idMR: MR2175858
.
Date available: 2009-05-05T16:49:29Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119507
.
Reference: [B] Baire R.: Sur la représentation des fonctions discontinues.Acta Math. 30 (1905), 1-48. MR 1555022
Reference: [CP] Chaber J., Pol R.: Remarks on closed relations and a theorem of Hurewicz.Topology Proc. 22 (1997), 81-94. Zbl 0943.54018, MR 1657906
Reference: [E] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [F] Feng Q.: Homogeneity for open partitions of pairs of reals.Trans. Amer. Math. Soc. 339 (1993), 659-684. Zbl 0795.03065, MR 1113695
Reference: [KLW] Kechris A.S., Louveau A., Woodin W.H.: The structure of $\sigma $-ideals of compact sets.Trans. Amer. Math. Soc. 301 (1987), 263-288. Zbl 0633.03043, MR 0879573
Reference: [K] Kunen K.: Set Theory. An Introduction to Independence Proofs.Springer, New York, 1980. Zbl 0534.03026, MR 0597342
Reference: [Ku] Kuratowski K.: Topology.vol. I, Academic Press, New York, 1966. Zbl 0849.01044, MR 0217751
Reference: [L] Lusin N.N.: Collected Works, Part $2$.Moscow, 1958 (in Russian).
Reference: [MP] Michalewski H., Pol R.: On a Hurewicz-type theorem and a selection theorem of Michael.Bull. Polish Acad. Sci. Math. 43 (1995), 273-275. Zbl 0841.54029, MR 1414783
Reference: [P] Petruska Gy.: On Borel sets with small covers.Real Anal. Exchange 18 (1992-93), 330-338. MR 1228398
Reference: [S] Solecki S.: Covering analytic sets by families of closed sets.J. Symbolic Logic 59 (1994), 1022-1031. Zbl 0808.03031, MR 1295987
Reference: [Z] Zajíček L.: On $\sigma$-porous sets in abstract spaces (a partial survey).Abstr. Appl. Anal., to appear. MR 2201041
Reference: [ZZ] Zajíček L., Zelený M.: Inscribing closed non-$\sigma$-lower porous sets into Suslin non-$\sigma$-lower porous sets.Abstr. Appl. Anal., to appear. MR 2197116
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-1_5.pdf 256.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo