Previous |  Up |  Next

Article

Title: Duality theory of spaces of vector-valued continuous functions (English)
Author: Nowak, Marian
Author: Rzepka, Aleksandra
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 1
Year: 2005
Pages: 55-73
.
Category: math
.
Summary: Let $X$ be a completely regular Hausdorff space, $E$ a real normed space, and let $C_b(X,E)$ be the space of all bounded continuous $E$-valued functions on $X$. We develop the general duality theory of the space $C_b(X,E)$ endowed with locally solid topologies; in particular with the strict topologies $\beta_z(X,E)$ for $z=\sigma, \tau, t$. As an application, we consider criteria for relative weak-star compactness in the spaces of vector measures $M_z(X,E')$ for $z=\sigma, \tau, t$. It is shown that if a subset $H$ of $M_z(X,E')$ is relatively $\sigma(M_z(X,E'), C_b(X,E))$-compact, then the set $\operatorname{conv} (S(H))$ is still relatively $\sigma(M_z(X,E'), C_b(X,E))$-compact ($S(H)=$ the solid hull of $H$ in $M_z(X,E')$). A Mackey-Arens type theorem for locally convex-solid topologies on $C_b(X,E)$ is obtained. (English)
Keyword: vector-valued continuous functions
Keyword: strict topologies
Keyword: locally solid topologies
Keyword: weak-star compactness
Keyword: vector measures
MSC: 46E10
MSC: 46E15
MSC: 46E40
MSC: 46G10
idZBL: Zbl 1123.46021
idMR: MR2175859
.
Date available: 2009-05-05T16:49:35Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119508
.
Reference: [AB$_1$] Aliprantis C.D., Burkinshaw O.: Locally Solid Riesz Spaces.Academic Press, New York, San Francisco, London, 1978. Zbl 1043.46003, MR 0493242
Reference: [AB$_2$] Aliprantis C.D., Burkinshaw O.: Positive Operators.Academic Press, New York, 1985. Zbl 1098.47001, MR 0809372
Reference: [F$_{{\pmb 1}}$] Fontenot R.A.: Strict topologies for vector-valued functions.Canad. J. Math. 26 (1974), 841-853. Zbl 0259.46037, MR 0348463
Reference: [F$_{{\pmb 2}}$] Fontenot R.A.: Strict topologies for vector-valued functions, Corrigendum.Canad. J. Math. 27 5 (1975), 1183-1184. MR 0388057
Reference: [GJ] Gillman L., Jerison M.: Rings of Continuous Functions.Van Nostrand, Princeton, NJ, 1960. Zbl 0327.46040, MR 0116199
Reference: [Kh] Khurana S.S.: Topologies on spaces of vector-valued continuous functions.Trans. Amer. Math. Soc. 241 (1978), 195-211. Zbl 0362.46035, MR 0492297
Reference: [KhC] Khurana S.S., Chao S.A.: Strict topologies and $P$-spaces.Proc. Amer. Math. Soc. 61 (1976), 280-284. MR 0425603
Reference: [KhO$_{1}$] Khurana S.S., Othman S.I.: Convex compactness property in certain spaces of measures.Math. Ann. 279 (1987), 345-348. Zbl 0613.46041, MR 0919510
Reference: [KhO$_{2}$] Khurana S.S., Othman S.I.: Grothendieck measures.J. London Math. Soc. (2) 39 (1989), 481-486. Zbl 0681.46030, MR 1002460
Reference: [KhO$_{3}$] Khurana S.S., Othman S.I.: Completeness and sequential completeness in certain spaces of measures.Math. Slovaca 45 2 (1995), 163-170. Zbl 0832.46016, MR 1357072
Reference: [KhV$_{1}$] Khurana S.S., Vielma J.: Strict topologies and perfect measures.Czechoslovak Math. J. 40 1 (1990), 1-7. MR 1032358
Reference: [KhV$_{2}$] Khurana S.S., Vielma J.: Weak sequential convergence and weak compactness in spaces of vector-valued continuous functions.J. Math. Anal. Appl. 195 (1995), 251-260. Zbl 0854.46032, MR 1352821
Reference: [NR] Nowak M., Rzepka A.: Locally solid topologies on spaces of vector-valued continuous functions.Comment. Math. Univ. Carolinae 43 3 (2002), 473-483. Zbl 1068.46023, MR 1920522
Reference: [S] Sentilles F.D.: Bounded continuous functions on a completely regular space.Trans. Amer. Math. Soc. 168 (1972), 311-336. Zbl 0244.46027, MR 0295065
Reference: [V] Varadarajan V.S.: Measures on topological spaces.Amer. Math. Soc. Translations (2) 48 (1965), 161-220.
Reference: [Wh] Wheeler R.F.: Survey of Baire measures and strict topologies.Exposition Math. 2 (1983), 97-190. Zbl 0522.28009, MR 0710569
Reference: [Wi] Wilansky A.: Modern Methods in Topological Vector Spaces.McGraw-Hill, New York, 1978. Zbl 0395.46001, MR 0518316
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-1_6.pdf 297.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo