Title:
|
Duality theory of spaces of vector-valued continuous functions (English) |
Author:
|
Nowak, Marian |
Author:
|
Rzepka, Aleksandra |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
46 |
Issue:
|
1 |
Year:
|
2005 |
Pages:
|
55-73 |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a completely regular Hausdorff space, $E$ a real normed space, and let $C_b(X,E)$ be the space of all bounded continuous $E$-valued functions on $X$. We develop the general duality theory of the space $C_b(X,E)$ endowed with locally solid topologies; in particular with the strict topologies $\beta_z(X,E)$ for $z=\sigma, \tau, t$. As an application, we consider criteria for relative weak-star compactness in the spaces of vector measures $M_z(X,E')$ for $z=\sigma, \tau, t$. It is shown that if a subset $H$ of $M_z(X,E')$ is relatively $\sigma(M_z(X,E'), C_b(X,E))$-compact, then the set $\operatorname{conv} (S(H))$ is still relatively $\sigma(M_z(X,E'), C_b(X,E))$-compact ($S(H)=$ the solid hull of $H$ in $M_z(X,E')$). A Mackey-Arens type theorem for locally convex-solid topologies on $C_b(X,E)$ is obtained. (English) |
Keyword:
|
vector-valued continuous functions |
Keyword:
|
strict topologies |
Keyword:
|
locally solid topologies |
Keyword:
|
weak-star compactness |
Keyword:
|
vector measures |
MSC:
|
46E10 |
MSC:
|
46E15 |
MSC:
|
46E40 |
MSC:
|
46G10 |
idZBL:
|
Zbl 1123.46021 |
idMR:
|
MR2175859 |
. |
Date available:
|
2009-05-05T16:49:35Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119508 |
. |
Reference:
|
[AB$_1$] Aliprantis C.D., Burkinshaw O.: Locally Solid Riesz Spaces.Academic Press, New York, San Francisco, London, 1978. Zbl 1043.46003, MR 0493242 |
Reference:
|
[AB$_2$] Aliprantis C.D., Burkinshaw O.: Positive Operators.Academic Press, New York, 1985. Zbl 1098.47001, MR 0809372 |
Reference:
|
[F$_{{\pmb 1}}$] Fontenot R.A.: Strict topologies for vector-valued functions.Canad. J. Math. 26 (1974), 841-853. Zbl 0259.46037, MR 0348463 |
Reference:
|
[F$_{{\pmb 2}}$] Fontenot R.A.: Strict topologies for vector-valued functions, Corrigendum.Canad. J. Math. 27 5 (1975), 1183-1184. MR 0388057 |
Reference:
|
[GJ] Gillman L., Jerison M.: Rings of Continuous Functions.Van Nostrand, Princeton, NJ, 1960. Zbl 0327.46040, MR 0116199 |
Reference:
|
[Kh] Khurana S.S.: Topologies on spaces of vector-valued continuous functions.Trans. Amer. Math. Soc. 241 (1978), 195-211. Zbl 0362.46035, MR 0492297 |
Reference:
|
[KhC] Khurana S.S., Chao S.A.: Strict topologies and $P$-spaces.Proc. Amer. Math. Soc. 61 (1976), 280-284. MR 0425603 |
Reference:
|
[KhO$_{1}$] Khurana S.S., Othman S.I.: Convex compactness property in certain spaces of measures.Math. Ann. 279 (1987), 345-348. Zbl 0613.46041, MR 0919510 |
Reference:
|
[KhO$_{2}$] Khurana S.S., Othman S.I.: Grothendieck measures.J. London Math. Soc. (2) 39 (1989), 481-486. Zbl 0681.46030, MR 1002460 |
Reference:
|
[KhO$_{3}$] Khurana S.S., Othman S.I.: Completeness and sequential completeness in certain spaces of measures.Math. Slovaca 45 2 (1995), 163-170. Zbl 0832.46016, MR 1357072 |
Reference:
|
[KhV$_{1}$] Khurana S.S., Vielma J.: Strict topologies and perfect measures.Czechoslovak Math. J. 40 1 (1990), 1-7. MR 1032358 |
Reference:
|
[KhV$_{2}$] Khurana S.S., Vielma J.: Weak sequential convergence and weak compactness in spaces of vector-valued continuous functions.J. Math. Anal. Appl. 195 (1995), 251-260. Zbl 0854.46032, MR 1352821 |
Reference:
|
[NR] Nowak M., Rzepka A.: Locally solid topologies on spaces of vector-valued continuous functions.Comment. Math. Univ. Carolinae 43 3 (2002), 473-483. Zbl 1068.46023, MR 1920522 |
Reference:
|
[S] Sentilles F.D.: Bounded continuous functions on a completely regular space.Trans. Amer. Math. Soc. 168 (1972), 311-336. Zbl 0244.46027, MR 0295065 |
Reference:
|
[V] Varadarajan V.S.: Measures on topological spaces.Amer. Math. Soc. Translations (2) 48 (1965), 161-220. |
Reference:
|
[Wh] Wheeler R.F.: Survey of Baire measures and strict topologies.Exposition Math. 2 (1983), 97-190. Zbl 0522.28009, MR 0710569 |
Reference:
|
[Wi] Wilansky A.: Modern Methods in Topological Vector Spaces.McGraw-Hill, New York, 1978. Zbl 0395.46001, MR 0518316 |
. |