Previous |  Up |  Next

Article

Title: Birkhoff's Covariety Theorem without limitations (English)
Author: Adámek, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 2
Year: 2005
Pages: 197-215
.
Category: math
.
Summary: J. Rutten proved, for accessible endofunctors $F$ of {\bf Set}, the dual Birk\-hoff's Variety Theorem: a collection of $F$-coalgebras is presentable by coequations ($=$ subobjects of cofree coalgebras) iff it is closed under quotients, subcoalgebras, and coproducts. This result is now proved to hold for all endofunctors $F$ of {\bf Set} provided that coequations are generalized to mean subchains of the cofree-coalgebra chain. For the concept of coequation introduced by H. Porst and the author, which is a subobject of a member of the cofree-coalgebra chain, the analogous result is false, in general. This answers negatively the open problem of A. Kurz and J. Rosick'y whether every covariety can be presented by equations w.r.t. co-operations. In contrast, in the category of classes Birkhoff's Covariety Theorem is proved to hold for all endofunctors (using Rutten's original concept of coequations). (English)
Keyword: Birkhoff's Theorem
Keyword: covariety
Keyword: coequation
MSC: 18C10
idZBL: Zbl 1121.18003
idMR: MR2176888
.
Date available: 2009-05-05T16:50:38Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119520
.
Reference: [AAMV] Aczel P., Adámek J., Milius S., Velebil J.: Infinite trees and completely iterative theories - a coalgebraic view.Theoret. Comput. Sci. 300 (2003), 1-45. Zbl 1028.68077, MR 1976176
Reference: [A] Adámek J.: Free algebras and automata realizations in the language of categories.Comment. Math. Univ. Carolinae 15 (1974), 589-602. MR 0352209
Reference: [AK] Adámek J., Koubek V.: On the greatest fixed point of a set functor.Theoret. Comput. Sci. 150 (1995), 57-75. MR 1357120
Reference: [AMV] Adámek J., Milius S., Velebil J.: On coalgebra based on classes.Theoret. Comput. Sci. 316 (2004), 2-23. Zbl 1047.18005, MR 2074922
Reference: [AP] Adámek J., Porst H.-E.: On varieties and covarieties in a category.Math. Structures Comput. Sci. 13 (2003), 201-232. Zbl 1041.18007, MR 1994641
Reference: [AT] Adámek J., Trnková V.: Automata and Algebras in a Category.Kluwer Academic Publishers, Dordrecht, 1990. MR 1071169
Reference: [AH] Awodey S., Hughes J.: Modal operators and the formal dual of Birkhoff's completness theorem.Math. Structures Comput. Sci. 13 (2003), 233-258. MR 1994642
Reference: [B] Barr M.: Terminal coalgebras in well-founded set theory.Theoret. Comput. Sci. 114 (1993), 299-315. Zbl 0779.18004, MR 1228862
Reference: [G] Gumm H.P.: Birkhoff's variety theorem for coalgebras.Contributions to General Algebra 13 (2000), 159-173. MR 1854581
Reference: [H] Herrlich H.: Remarks on categories of algebras defined by a proper class of operations.Quaestiones Math. 13 (1990), 385-393. Zbl 0733.18004, MR 1084749
Reference: [KR] Kurz A., Rosický J.: Modal predicates and coequations.Electronic Notes in Theoret. Comput. Sci. 65 1 (2002).
Reference: [Re] Reiterman J.: One more categorical model of universal algebra.Math. Z. 161 (1978), 137-146. Zbl 0363.18007, MR 0498325
Reference: [Ru] Rutten J.J.M.M.: Universal coalgebra: a theory of systems.Theoret. Comput. Sci. 249 1 (2000), 30-80. Zbl 0951.68038, MR 1791953
Reference: [RT] Rutten J.J.M.M., Turi D.: On the foundations of final semantics: nonstandard sets, metric spaces, partial orders.Lecture Notes in Comput. Sci. 666, Springer, Berlin, 1993, pp.477-530. MR 1255996
Reference: [W] Worrell J.: On Coalgebras and Final Semantics.PhD Thesis, Oxford University Computing Laboratory, 2000, accepted for publication in Theoret. Comput. Sci.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-2_1.pdf 289.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo