| Title: | Combinatorial trees in Priestley spaces (English) | 
| Author: | Ball, Richard N. | 
| Author: | Pultr, Aleš | 
| Author: | Sichler, Jiří | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 46 | 
| Issue: | 2 | 
| Year: | 2005 | 
| Pages: | 217-234 | 
| . | 
| Category: | math | 
| . | 
| Summary: | We show that prohibiting a combinatorial tree in the Priestley duals determines an axiomatizable class of distributive lattices. On the other hand, prohibiting $n$-crowns with $n\geq 3$ does not. Given what is known about the diamond, this is another strong indication that this fact characterizes combinatorial trees. We also discuss varieties of 2-Heyting algebras in this context. (English) | 
| Keyword: | distributive lattice | 
| Keyword: | Priestley duality | 
| Keyword: | poset | 
| Keyword: | first-order definable | 
| MSC: | 03C05 | 
| MSC: | 06A11 | 
| MSC: | 06D20 | 
| MSC: | 06D50 | 
| MSC: | 06D55 | 
| MSC: | 54F05 | 
| idZBL: | Zbl 1121.06003 | 
| idMR: | MR2176889 | 
| . | 
| Date available: | 2009-05-05T16:50:44Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119521 | 
| . | 
| Reference: | [1] Adams M.E., Beazer R.: Congruence properties of distributive double $p$-algebras.Czechoslovak Math. J. 41 (1991), 395-404. Zbl 0758.06008, MR 1117792 | 
| Reference: | [2] Adámek J., Herrlich H., Strecker G.: Abstract and concrete categories.Wiley Interscience, New York, 1990. MR 1051419 | 
| Reference: | [3] Ball R.N., Pultr A.: Forbidden Forests in Priestley Spaces.Cahiers Topologie Géom. Différentielle Catég. 45 1 (2004), 2-22. Zbl 1062.06020, MR 2040660 | 
| Reference: | [4] Ball R.N., Pultr A., Sichler J.: Priestley configurations and Heyting varieties.submitted for publication. Zbl 1165.06003 | 
| Reference: | [5] Ball R.N., Pultr A., Sichler J.: Configurations in coproducts of Priestley spaces.to appear in Appl. Categ. Structures. Zbl 1086.06012, MR 2141593 | 
| Reference: | [6] Burris S., Sankappanavar H.P.: A Course in Universal Algebra.Graduate Texts in Mathematics 78, Springer, New York-Heidelberg-Berlin, 1981. Zbl 0478.08001, MR 0648287 | 
| Reference: | [7] Davey B.A., Priestley H.A.: Introduction to Lattices and Order.second edition, Cambridge University Press, New York, 2001. Zbl 1002.06001, MR 1902334 | 
| Reference: | [8] Koubek V., Sichler J.: On Priestley duals of products.Cahiers Topologie Géom. Différentielle Catég. 32 (1991), 243-256. Zbl 0774.06006, MR 1158110 | 
| Reference: | [9] Łoś J.: Quelques remarques, théorèmes et problèmes sur les classes définisables d'algèbres.Mathematical interpretation of formal systems, North-Holland, Amsterdam, 1955, pp.98-113. | 
| Reference: | [10] Monteiro A.: L'arithmetique des filtres et les espaces topologiques.I, II, Notas de Lógica Matemática (1974), 29-30. Zbl 0318.06019 | 
| Reference: | [11] Priestley H.A.: Representation of distributive lattices by means of ordered Stone spaces.Bull. London Math. Soc. 2 (1970), 186-190. Zbl 0201.01802, MR 0265242 | 
| Reference: | [12] Priestley H.A.: Ordered topological spaces and the representation of distributive lattices.Proc. London Math. Soc. 324 (1972), 507-530. Zbl 0323.06011, MR 0300949 | 
| . |