Previous |  Up |  Next

Article

Title: Combinatorial trees in Priestley spaces (English)
Author: Ball, Richard N.
Author: Pultr, Aleš
Author: Sichler, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 2
Year: 2005
Pages: 217-234
.
Category: math
.
Summary: We show that prohibiting a combinatorial tree in the Priestley duals determines an axiomatizable class of distributive lattices. On the other hand, prohibiting $n$-crowns with $n\geq 3$ does not. Given what is known about the diamond, this is another strong indication that this fact characterizes combinatorial trees. We also discuss varieties of 2-Heyting algebras in this context. (English)
Keyword: distributive lattice
Keyword: Priestley duality
Keyword: poset
Keyword: first-order definable
MSC: 03C05
MSC: 06A11
MSC: 06D20
MSC: 06D50
MSC: 06D55
MSC: 54F05
idZBL: Zbl 1121.06003
idMR: MR2176889
.
Date available: 2009-05-05T16:50:44Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119521
.
Reference: [1] Adams M.E., Beazer R.: Congruence properties of distributive double $p$-algebras.Czechoslovak Math. J. 41 (1991), 395-404. Zbl 0758.06008, MR 1117792
Reference: [2] Adámek J., Herrlich H., Strecker G.: Abstract and concrete categories.Wiley Interscience, New York, 1990. MR 1051419
Reference: [3] Ball R.N., Pultr A.: Forbidden Forests in Priestley Spaces.Cahiers Topologie Géom. Différentielle Catég. 45 1 (2004), 2-22. Zbl 1062.06020, MR 2040660
Reference: [4] Ball R.N., Pultr A., Sichler J.: Priestley configurations and Heyting varieties.submitted for publication. Zbl 1165.06003
Reference: [5] Ball R.N., Pultr A., Sichler J.: Configurations in coproducts of Priestley spaces.to appear in Appl. Categ. Structures. Zbl 1086.06012, MR 2141593
Reference: [6] Burris S., Sankappanavar H.P.: A Course in Universal Algebra.Graduate Texts in Mathematics 78, Springer, New York-Heidelberg-Berlin, 1981. Zbl 0478.08001, MR 0648287
Reference: [7] Davey B.A., Priestley H.A.: Introduction to Lattices and Order.second edition, Cambridge University Press, New York, 2001. Zbl 1002.06001, MR 1902334
Reference: [8] Koubek V., Sichler J.: On Priestley duals of products.Cahiers Topologie Géom. Différentielle Catég. 32 (1991), 243-256. Zbl 0774.06006, MR 1158110
Reference: [9] Łoś J.: Quelques remarques, théorèmes et problèmes sur les classes définisables d'algèbres.Mathematical interpretation of formal systems, North-Holland, Amsterdam, 1955, pp.98-113.
Reference: [10] Monteiro A.: L'arithmetique des filtres et les espaces topologiques.I, II, Notas de Lógica Matemática (1974), 29-30. Zbl 0318.06019
Reference: [11] Priestley H.A.: Representation of distributive lattices by means of ordered Stone spaces.Bull. London Math. Soc. 2 (1970), 186-190. Zbl 0201.01802, MR 0265242
Reference: [12] Priestley H.A.: Ordered topological spaces and the representation of distributive lattices.Proc. London Math. Soc. 324 (1972), 507-530. Zbl 0323.06011, MR 0300949
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-2_2.pdf 279.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo