Title:
|
Finitely generated almost universal varieties of $0$-lattices (English) |
Author:
|
Koubek, V. |
Author:
|
Sichler, J. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
46 |
Issue:
|
2 |
Year:
|
2005 |
Pages:
|
301-325 |
. |
Category:
|
math |
. |
Summary:
|
A concrete category $\Bbb K$ is (algebraically) {\it universal\/} if any category of algebras has a full embedding into $\Bbb K$, and $\Bbb K$ is {\it almost universal\/} if there is a class $\Cal C$ of $\Bbb K$-objects such that all non-constant homomorphisms between them form a universal category. The main result of this paper fully characterizes the finitely generated varieties of $0$-lattices which are almost universal. (English) |
Keyword:
|
(algebraically) universal category |
Keyword:
|
finite-to-finite universal category |
Keyword:
|
almost universal category |
Keyword:
|
$0$-lattice |
Keyword:
|
variety of $0$-lattices |
MSC:
|
06B20 |
MSC:
|
06D15 |
MSC:
|
08A35 |
MSC:
|
08B15 |
MSC:
|
08C15 |
MSC:
|
18B15 |
idZBL:
|
Zbl 1119.06006 |
idMR:
|
MR2176894 |
. |
Date available:
|
2009-05-05T16:51:11Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119526 |
. |
Reference:
|
[1] Adams M.E., Dziobiak W.: Finite-to-finite universal quasivarieties are $Q$-universal.Algebra Universalis 46 (2001), 253-283. Zbl 1059.08002, MR 1835799 |
Reference:
|
[2] Dziobiak W.: On lattice identities satisfied in subquasivariety lattices of varieties of modular lattices.Algebra Universalis 22 (1986), 205-214. Zbl 0608.06005, MR 0870468 |
Reference:
|
[3] Goralčík P., Koubek V., Sichler J.: Universal varieties of (0,1)-lattices.Canad. Math. J. 42 (1990), 470-490. Zbl 0709.18003, MR 1062740 |
Reference:
|
[4] Grätzer G., Sichler J.: On the endomorphism semigroup (and category) of bounded lattices.Pacific J. Math. 35 (1970), 639-647. MR 0277442 |
Reference:
|
[5] Koubek V., Sichler J.: Universal varieties of semigroups.J. Austral. Math. Soc. (Series A) 36 (1984),143-152. Zbl 0549.20038, MR 0725742 |
Reference:
|
[6] Koubek V., Sichler J.: Almost universal varieties of monoids.Algebra Universalis 19 (1984), 330-334. Zbl 0551.20047, MR 0779149 |
Reference:
|
[7] Koubek V., Sichler J.: Universality of small lattice varieties.Proc. Amer. Math. Soc. 91 (1984), 19-24. Zbl 0507.06006, MR 0735556 |
Reference:
|
[8] Koubek V., Sichler J.: On almost universal varieties of modular lattices.Algebra Universalis 45 (2001), 191-210. Zbl 0981.06004, MR 1810548 |
Reference:
|
[9] Koubek V., Sichler J.: On relative universality and $Q$-universality.Studia Logica 78 (2004), 279-291. Zbl 1079.08009, MR 2108030 |
Reference:
|
[10] Koubek V., Sichler J.: Almost $ff$-universal and $Q$-universal varieties of modular $0$-lattices.Colloq. Math., to appear. Zbl 1066.06004, MR 2110722 |
Reference:
|
[11] McKenzie R., Tsinakis C.: On recovering bounded distributive lattice from its endomorphism monoid.Houston J. Math. 7 (1981), 525-529. MR 0658568 |
Reference:
|
[12] Pultr A., Trnková V.: Combinatorial, algebraic and topological representations of groups, semigroups and categories.North Holland Amsterdam (1980). MR 0563525 |
Reference:
|
[13] Ribenboim P.: Characterization of the sup-complement in a distributive lattice with last element.Summa Brasil Math. 2 (1949), 43-49. Zbl 0040.01003, MR 0030931 |
Reference:
|
[14] Sapir M.V.: The lattice of quasivarieties of semigroups.Algebra Universalis 21 (1985), 172-180. Zbl 0599.08014, MR 0855737 |
. |