Previous |  Up |  Next

Article

Title: Finitely generated almost universal varieties of $0$-lattices (English)
Author: Koubek, V.
Author: Sichler, J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 2
Year: 2005
Pages: 301-325
.
Category: math
.
Summary: A concrete category $\Bbb K$ is (algebraically) {\it universal\/} if any category of algebras has a full embedding into $\Bbb K$, and $\Bbb K$ is {\it almost universal\/} if there is a class $\Cal C$ of $\Bbb K$-objects such that all non-constant homomorphisms between them form a universal category. The main result of this paper fully characterizes the finitely generated varieties of $0$-lattices which are almost universal. (English)
Keyword: (algebraically) universal category
Keyword: finite-to-finite universal category
Keyword: almost universal category
Keyword: $0$-lattice
Keyword: variety of $0$-lattices
MSC: 06B20
MSC: 06D15
MSC: 08A35
MSC: 08B15
MSC: 08C15
MSC: 18B15
idZBL: Zbl 1119.06006
idMR: MR2176894
.
Date available: 2009-05-05T16:51:11Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119526
.
Reference: [1] Adams M.E., Dziobiak W.: Finite-to-finite universal quasivarieties are $Q$-universal.Algebra Universalis 46 (2001), 253-283. Zbl 1059.08002, MR 1835799
Reference: [2] Dziobiak W.: On lattice identities satisfied in subquasivariety lattices of varieties of modular lattices.Algebra Universalis 22 (1986), 205-214. Zbl 0608.06005, MR 0870468
Reference: [3] Goralčík P., Koubek V., Sichler J.: Universal varieties of (0,1)-lattices.Canad. Math. J. 42 (1990), 470-490. Zbl 0709.18003, MR 1062740
Reference: [4] Grätzer G., Sichler J.: On the endomorphism semigroup (and category) of bounded lattices.Pacific J. Math. 35 (1970), 639-647. MR 0277442
Reference: [5] Koubek V., Sichler J.: Universal varieties of semigroups.J. Austral. Math. Soc. (Series A) 36 (1984),143-152. Zbl 0549.20038, MR 0725742
Reference: [6] Koubek V., Sichler J.: Almost universal varieties of monoids.Algebra Universalis 19 (1984), 330-334. Zbl 0551.20047, MR 0779149
Reference: [7] Koubek V., Sichler J.: Universality of small lattice varieties.Proc. Amer. Math. Soc. 91 (1984), 19-24. Zbl 0507.06006, MR 0735556
Reference: [8] Koubek V., Sichler J.: On almost universal varieties of modular lattices.Algebra Universalis 45 (2001), 191-210. Zbl 0981.06004, MR 1810548
Reference: [9] Koubek V., Sichler J.: On relative universality and $Q$-universality.Studia Logica 78 (2004), 279-291. Zbl 1079.08009, MR 2108030
Reference: [10] Koubek V., Sichler J.: Almost $ff$-universal and $Q$-universal varieties of modular $0$-lattices.Colloq. Math., to appear. Zbl 1066.06004, MR 2110722
Reference: [11] McKenzie R., Tsinakis C.: On recovering bounded distributive lattice from its endomorphism monoid.Houston J. Math. 7 (1981), 525-529. MR 0658568
Reference: [12] Pultr A., Trnková V.: Combinatorial, algebraic and topological representations of groups, semigroups and categories.North Holland Amsterdam (1980). MR 0563525
Reference: [13] Ribenboim P.: Characterization of the sup-complement in a distributive lattice with last element.Summa Brasil Math. 2 (1949), 43-49. Zbl 0040.01003, MR 0030931
Reference: [14] Sapir M.V.: The lattice of quasivarieties of semigroups.Algebra Universalis 21 (1985), 172-180. Zbl 0599.08014, MR 0855737
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-2_7.pdf 345.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo