Previous |  Up |  Next

Article

Title: Relatively additive states on quantum logics (English)
Author: Pták, Pavel
Author: Weber, Hans
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 2
Year: 2005
Pages: 327-338
.
Category: math
.
Summary: In this paper we carry on the investigation of partially additive states on quantum logics (see [2], [5], [7], [8], [11], [12], [15], [18], etc.). We study a variant of weak states — the states which are additive with respect to a given Boolean subalgebra. In the first result we show that there are many quantum logics which do not possess any 2-additive central states (any logic possesses an abundance of 1-additive central state — see [12]). In the second result we construct a finite 3-homogeneous quantum logic which does not possess any two-valued 1-additive state with respect to a given Boolean subalgebra. This result strengthens Theorem 2 of [5] and presents a rather advanced example in the orthomodular combinatorics (see also [9], [13], [4], [6], [16], etc.). In the rest we show that Greechie logics allow for $2$-additive three-valued states, and in case of Greechie lattices we show that one can even construct many $2$-additive two-valued states. Some open questions are posed, too. (English)
Keyword: (weak) state on quantum logic
Keyword: Greechie paste job
Keyword: Boolean algebra
MSC: 03G12
MSC: 46C05
MSC: 81P10
idZBL: Zbl 1121.03085
idMR: MR2176895
.
Date available: 2009-05-05T16:51:17Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119527
.
Reference: [1] Beran L.: Orthomodular Lattices. Algebraic Approach.Academia, Praha, 1984. Zbl 0558.06008, MR 0785005
Reference: [2] Binder J., Pták P.: A representation of orthomodular lattices.Acta Univ. Carolin. - Math. Phys. 31 (1990), 21-26. MR 1098124
Reference: [3] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures.Kluwer/Dordrecht & Ister/Bratislava, 2000. MR 1861369
Reference: [4] Greechie R.J.: Orthomodular lattices admitting no states.J. Combin. Theory Ser. A 10 (1971), 119-132. Zbl 0219.06007, MR 0274355
Reference: [5] Harding J., Pták P.: On the set representation of an orthomodular poset.Colloquium Math. 89 (2001), 233-240. Zbl 0984.06005, MR 1854706
Reference: [6] Kallus M., Trnková V.: Symmetries and retracts of quantum logics.Internat. J. Theoret. Phys. 26 (1987), 1-9. MR 0890206
Reference: [7] Katrnoška F.: A representation of orthoposets.Comment. Math. Univ. Carolinae 23 (1982), 489-498. MR 0677857
Reference: [8] Navara M.: An orthomodular lattice admitting no group-valued measure.Proc. Amer. Math. Soc. 122 (1994), 7-12. Zbl 0809.06008, MR 1191871
Reference: [9] Navara M., Pták P., Rogalewicz V.: Enlargements of quantum logics.Pacific J. Math. 135 (1988), 361-369. MR 0968618
Reference: [10] Navara M., Rogalewicz V.: The pasting constructions for orthomodular posets.Math. Nachr. 154 (1991), 157-168. Zbl 0767.06009, MR 1138377
Reference: [11] Ovchinnikov P.G.: Exact topological analogs to orthoposets.Proc. Amer. Math. Soc. 125 (1997), 2839-2841. Zbl 0880.06003, MR 1415360
Reference: [12] Pták P.: Weak dispersion-free states and the hidden variables hypothesis.J. Math. Phys. 24 (1983), 839-840. MR 0700618
Reference: [13] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics.Kluwer Academic Publishers, Dordrecht, 1991. MR 1176314
Reference: [14] Sultanbekov F.F.: Set logics and their representations.Internat. J. Theoret. Phys. 32 (1993), 11 2177-2186. Zbl 0799.03081, MR 1254335
Reference: [15] Tkadlec J.: Partially additive states on orthomodular posets.Colloquium Math. 62 (1991), 7-14. Zbl 0784.03037, MR 1114613
Reference: [16] Trnková V.: Automorphisms and symmetries of quantum logics.Internat. J. Theoret. Phys. 28 (1989), 1195-1214. MR 1031603
Reference: [17] Varadarajan V.: Geometry of Quantum Theory I, II.Van Nostrand, Princeton, 1968, 1970.
Reference: [18] Weber H.: There are orthomodular lattices without non-trivial group valued states; a computer-based construction.J. Math. Anal. Appl. 183 (1994), 89-94. Zbl 0797.06010, MR 1273434
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-2_8.pdf 246.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo