Title:
|
Relatively additive states on quantum logics (English) |
Author:
|
Pták, Pavel |
Author:
|
Weber, Hans |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
46 |
Issue:
|
2 |
Year:
|
2005 |
Pages:
|
327-338 |
. |
Category:
|
math |
. |
Summary:
|
In this paper we carry on the investigation of partially additive states on quantum logics (see [2], [5], [7], [8], [11], [12], [15], [18], etc.). We study a variant of weak states — the states which are additive with respect to a given Boolean subalgebra. In the first result we show that there are many quantum logics which do not possess any 2-additive central states (any logic possesses an abundance of 1-additive central state — see [12]). In the second result we construct a finite 3-homogeneous quantum logic which does not possess any two-valued 1-additive state with respect to a given Boolean subalgebra. This result strengthens Theorem 2 of [5] and presents a rather advanced example in the orthomodular combinatorics (see also [9], [13], [4], [6], [16], etc.). In the rest we show that Greechie logics allow for $2$-additive three-valued states, and in case of Greechie lattices we show that one can even construct many $2$-additive two-valued states. Some open questions are posed, too. (English) |
Keyword:
|
(weak) state on quantum logic |
Keyword:
|
Greechie paste job |
Keyword:
|
Boolean algebra |
MSC:
|
03G12 |
MSC:
|
46C05 |
MSC:
|
81P10 |
idZBL:
|
Zbl 1121.03085 |
idMR:
|
MR2176895 |
. |
Date available:
|
2009-05-05T16:51:17Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119527 |
. |
Reference:
|
[1] Beran L.: Orthomodular Lattices. Algebraic Approach.Academia, Praha, 1984. Zbl 0558.06008, MR 0785005 |
Reference:
|
[2] Binder J., Pták P.: A representation of orthomodular lattices.Acta Univ. Carolin. - Math. Phys. 31 (1990), 21-26. MR 1098124 |
Reference:
|
[3] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures.Kluwer/Dordrecht & Ister/Bratislava, 2000. MR 1861369 |
Reference:
|
[4] Greechie R.J.: Orthomodular lattices admitting no states.J. Combin. Theory Ser. A 10 (1971), 119-132. Zbl 0219.06007, MR 0274355 |
Reference:
|
[5] Harding J., Pták P.: On the set representation of an orthomodular poset.Colloquium Math. 89 (2001), 233-240. Zbl 0984.06005, MR 1854706 |
Reference:
|
[6] Kallus M., Trnková V.: Symmetries and retracts of quantum logics.Internat. J. Theoret. Phys. 26 (1987), 1-9. MR 0890206 |
Reference:
|
[7] Katrnoška F.: A representation of orthoposets.Comment. Math. Univ. Carolinae 23 (1982), 489-498. MR 0677857 |
Reference:
|
[8] Navara M.: An orthomodular lattice admitting no group-valued measure.Proc. Amer. Math. Soc. 122 (1994), 7-12. Zbl 0809.06008, MR 1191871 |
Reference:
|
[9] Navara M., Pták P., Rogalewicz V.: Enlargements of quantum logics.Pacific J. Math. 135 (1988), 361-369. MR 0968618 |
Reference:
|
[10] Navara M., Rogalewicz V.: The pasting constructions for orthomodular posets.Math. Nachr. 154 (1991), 157-168. Zbl 0767.06009, MR 1138377 |
Reference:
|
[11] Ovchinnikov P.G.: Exact topological analogs to orthoposets.Proc. Amer. Math. Soc. 125 (1997), 2839-2841. Zbl 0880.06003, MR 1415360 |
Reference:
|
[12] Pták P.: Weak dispersion-free states and the hidden variables hypothesis.J. Math. Phys. 24 (1983), 839-840. MR 0700618 |
Reference:
|
[13] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics.Kluwer Academic Publishers, Dordrecht, 1991. MR 1176314 |
Reference:
|
[14] Sultanbekov F.F.: Set logics and their representations.Internat. J. Theoret. Phys. 32 (1993), 11 2177-2186. Zbl 0799.03081, MR 1254335 |
Reference:
|
[15] Tkadlec J.: Partially additive states on orthomodular posets.Colloquium Math. 62 (1991), 7-14. Zbl 0784.03037, MR 1114613 |
Reference:
|
[16] Trnková V.: Automorphisms and symmetries of quantum logics.Internat. J. Theoret. Phys. 28 (1989), 1195-1214. MR 1031603 |
Reference:
|
[17] Varadarajan V.: Geometry of Quantum Theory I, II.Van Nostrand, Princeton, 1968, 1970. |
Reference:
|
[18] Weber H.: There are orthomodular lattices without non-trivial group valued states; a computer-based construction.J. Math. Anal. Appl. 183 (1994), 89-94. Zbl 0797.06010, MR 1273434 |
. |