Previous |  Up |  Next

Article

Title: Some relative properties on normality and paracompactness, and their absolute embeddings (English)
Author: Kawaguchi, Shinji
Author: Sokei, Ryoken
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 3
Year: 2005
Pages: 475-495
.
Category: math
.
Summary: Paracompactness ($=2$-paracompactness) and normality of a subspace $Y$ in a space $X$ defined by Arhangel'skii and Genedi [4] are fundamental in the study of relative topological properties ([2], [3]). These notions have been investigated by primary using of the notion of weak $C$- or weak $P$-embeddings, which are extension properties of functions defined in [2] or [18]. In fact, Bella and Yaschenko [8] characterized Tychonoff spaces which are normal in every larger Tychonoff space, and this result is essentially implied by their previous result in [8] on a corresponding case of weak $C$-embeddings. In this paper, we introduce notions of $1$-normality and $1$-collectionwise normality of a subspace $Y$ in a space $X$, which are closely related to $1$-paracompactness of $Y$ in $X$. Furthermore, notions of quasi-$C^\ast$- and quasi-$P$-embeddings are newly defined. Concerning the result of Bella and Yaschenko above, by characterizing absolute cases of quasi-$C^*$- and quasi-$P$-embeddings, we obtain the following result: a Tychonoff space $Y$ is $1$-normal (or equivalently, $1$-collectionwise normal) in every larger Tychonoff space if and only if $Y$ is normal and almost compact. As another concern, we also prove that a Tychonoff (respectively, regular, Hausdorff) space $Y$ is $1$-metacompact in every larger Tychonoff (respectively, regular, Hausdorff) space if and only if $Y$ is compact. Finally, we construct a Tychonoff space $X$ and a subspace $Y$ such that $Y$ is $1$-paracompact in $X$ but not $1$-subparacompact in $X$. This is a negative answer to a question of Qu and Yasui in [25]. (English)
Keyword: $1$-paracompactness of $Y$ in $X$
Keyword: $2$-paracompactness of $Y$ in $X$
Keyword: $1$-collectionwise normality of $Y$ in $X$
Keyword: $2$-collectionwise normality of $Y$ in $X$
Keyword: $1$-normality of $Y$ in $X$
Keyword: $2$-normality of $Y$ in $X$
Keyword: quasi-$P$-embedding
Keyword: quasi-$C$-embedding
Keyword: quasi-$C^{*}$-embedding
Keyword: $1$-metacompactness of $Y$ in $X$
Keyword: $1$-subparacompactness of $Y$ in $X$
MSC: 54B05
MSC: 54B10
MSC: 54C20
MSC: 54C45
MSC: 54D15
MSC: 54D20
idZBL: Zbl 1121.54018
idMR: MR2174526
.
Date available: 2009-05-05T16:52:39Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119542
.
Reference: [1] Alò R.A., Shapiro H.L.: Normal Topological Spaces.Cambridge Univ. Press, Cambridge, 1974. MR 0390985
Reference: [2] Arhangel'skii A.V.: Relative topological properties and relative topological spaces.Topology Appl. 70 (1996), 87-99. Zbl 0848.54016, MR 1397067
Reference: [3] Arhangel'skii A.V.: From classic topological invariants to relative topological properties.Sci. Math. Japon. 55 (2002), 153-201. MR 1885790
Reference: [4] Arhangel'skii A.V., Genedi H.M.M.: Beginnings of the theory of relative topological properties.in: General Topology. Spaces and Mappings, MGU, Moscow, 1989, pp.3-48.
Reference: [5] Arhangel'skii A.V., Gordienko I.Ju.: Relative symmetrizability and metrizability.Comment. Math. Univ. Carolinae 37 (1996), 757-774. Zbl 0886.54001, MR 1440706
Reference: [6] Aull C.E.: Paracompact subsets.Proc. the Second Prague Topological Symposium, Prague, 1966, pp.45-51. Zbl 0227.54015, MR 0234420
Reference: [7] Aull C.E.: Collectionwise normal subsets.J. London Math. Soc. 1 (1969), 155-162. Zbl 0182.56102, MR 0248709
Reference: [8] Bella A., Yaschenko I.V.: Lindelöf property and absolute embeddings.Proc. Amer. Math. Soc. 127 (1999), 907-913. Zbl 0907.54003, MR 1469399
Reference: [9] Blair R.L.: A cardinal generalization of $z$-embedding.in: Rings of continuous functions, Lecture Notes in Pure and Appl. Math., Vol. 95, Marcel Dekker, New York, 1985, pp.7-78. Zbl 0572.54011, MR 0789261
Reference: [10] Bing R.H.: Metrization of topological spaces.Canad. J. Math. 3 (1951), 175-186. Zbl 0042.41301, MR 0043449
Reference: [11] Burke D.K.: Covering Properties.in: K. Kunen and J.E. Vaughan, Eds., Handbook of the Set-Theoretic Topology, North-Holand, Amsterdam, 1984, pp.347-422. Zbl 0569.54022, MR 0776628
Reference: [12] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [13] Gillman L., Jerison M.: Rings of Continuous Functions.Van Nostrand, Princeton, 1960. Zbl 0327.46040, MR 0116199
Reference: [14] Gordienko I.Ju.: On relative properties of paracompactness and normality type.Moscow Univ. Math. Bull. 46 (1991), 31-32. Zbl 0791.54007, MR 1096270
Reference: [15] Gordienko I.Ju.: A characterization of relative Lindelöf property by relative paracompactness.in: General Topology. Spaces, mappings and functors, MUG, Moscow, 1992, pp.40-44.
Reference: [16] Grabner E.M., Grabner G.C., Miyazaki K.: On properties of relative metacompactness and paracompactness type.Topology Proc. 25 (2000), 145-177. Zbl 1026.54016, MR 1925682
Reference: [17] Hoshina T.: Extensions of mappings II.in: K. Morita and J. Nagata, Eds., Topics in General Topology, North-Holland, Amsterdam, 1989, pp.41-80. Zbl 0719.54014, MR 1053193
Reference: [18] Hoshina T., Yamazaki K.: Weak $C$-embedding and $P$-embedding, and product spaces.Topology Appl., 125 (2002), 233-247. Zbl 1013.54006, MR 1933574
Reference: [19] Hoshina T., Yamazaki K.: A characterization of weak $P$-embedding.preprint.
Reference: [20] Kočinac L.D.: Some relative topological properties.Math. Vesnik 44 (1992), 33-44. MR 1201265
Reference: [21] Lupiañez F.G.: On covering properties.Math. Nachr. 141 (1989), 37-43. MR 1014413
Reference: [22] Lupiañez F.G, Outerelo E.: Paracompactness and closed subsets.Tsukuba J. Math. 13 (1989), 483-493. MR 1030230
Reference: [23] Matveev M.V.: A survey on star covering properties.Topology Atlas, preprint no. 330, 1998.
Reference: [24] Matveev M.V., Pavlov O.I., Tartir J.: On relatively normal spaces, relatively regular spaces, and on relative property $(a)$.Topology Appl. 93 (1999), 121-129. Zbl 0951.54017, MR 1680839
Reference: [25] Qu Z., Yasui Y.: Relatively subparacompact spaces.Sci. Math. Japon. 54 (2001), 281-287. Zbl 0985.54033, MR 1859682
Reference: [26] Scott B.M.: Pseudocompact, metacompact spaces are compact.Topology Proc. 4 (1979), 577-587. MR 0598295
Reference: [27] Watson S.: Pseudocompact metacompact spaces are compact.Proc. Amer. Math. Soc. 81 (1981), 151-152. Zbl 0468.54014, MR 0589159
Reference: [28] Yamazaki K.: Absolute weak $C$-embedding in Hausdorff spaces.Topology Appl. 131 (2003), 273-279. Zbl 1025.54010, MR 1983083
Reference: [29] Yamazaki K.: Aull-paracompactness and strong star-normality of subspaces in topological spaces.Comment. Math. Univ. Carolinae 45 (2004), 743-747. Zbl 1099.54023, MR 2103089
Reference: [30] Yamazaki K.: A question on relative normality.unpublished.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-3_10.pdf 320.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo