Previous |  Up |  Next

Article

Title: Weak extent in normal spaces (English)
Author: Levy, Ronnie
Author: Matveev, Mikhail
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 3
Year: 2005
Pages: 497-501
.
Category: math
.
Summary: If $X$ is a space, then the {\it weak extent\/} $\operatorname{we}(X)$ of $X$ is the cardinal $\min \{\alpha :$ If $\Cal U$ is an open cover of $X$, then there exists $A\subseteq X$ such that $|A| = \alpha $ and $\operatorname{St}(A,\Cal U)=X\}$. In this note, we show that if $X$ is a normal space such that $|X| = \frak c$ and $\operatorname{we}(X) = \omega $, then $X$ does not have a closed discrete subset of cardinality $\frak c$. We show that this result cannot be strengthened in ZFC to get that the extent of $X$ is smaller than $\frak c$, even if the condition that $\operatorname{we}(X) = \omega $ is replaced by the stronger condition that $X$ is separable. (English)
Keyword: extent
Keyword: weak extent
Keyword: separable
Keyword: star-Lindel"{o}f
Keyword: normal
MSC: 54A25
MSC: 54D15
MSC: 54D40
idZBL: Zbl 1121.54012
idMR: MR2174527
.
Date available: 2009-05-05T16:52:45Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119543
.
Reference: [H] Hodel R.E.: Combinatorial set theory and cardinal function inequalities.Proc. Amer. Math. Soc. 111 (1991), 567-575. Zbl 0713.54007, MR 1039531
Reference: [I] Ikenaga S.: A class which contains Lindelöf spaces, separable spaces and countably compact spaces.Mem. Numazo Coll. Technology 18 (1983), 105-108.
Reference: [K] Kozma G.: On removing one point from a compact space.Houston J. Math. 30 4 (2004), 1115-1126. Zbl 1069.54017, MR 2110253
Reference: [M] Matveev M.: How weak is weak extent?.Topology Appl. 119 (2002), 229-232. Zbl 0986.54003, MR 1886097
Reference: [T1] Tall F.: Normality versus collectionwise normality.Handbook of Set Theoretic Topology, North-Holland, Amsterdam, 1984, pp.685-732. Zbl 0552.54011, MR 0776634
Reference: [T2] Tall F.: Weakly collectionwise Hausdorff spaces.Topology Proc. 1 (1976), 295-304. Zbl 0382.54004, MR 0454914
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-3_11.pdf 187.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo