Previous |  Up |  Next

Article

Title: A nice class extracted from $C_p$-theory (English)
Author: Tkachuk, Vladimir V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 3
Year: 2005
Pages: 503-513
.
Category: math
.
Summary: We study systematically a class of spaces introduced by Sokolov and call them Sokolov spaces. Their importance can be seen from the fact that every Corson compact space is a Sokolov space. We show that every Sokolov space is collectionwise normal, $\omega $-stable and $\omega $-monolithic. It is also established that any Sokolov compact space $X$ is Fréchet-Urysohn and the space $C_p(X)$ is Lindelöf. We prove that any Sokolov space with a $G_\delta $-diagonal has a countable network and obtain some cardinality restrictions on subsets of small pseudocharacter lying in $\Sigma $-products of cosmic spaces. (English)
Keyword: Corson compact space
Keyword: Sokolov space
Keyword: extent
Keyword: $\omega $-monolithic space
Keyword: $\Sigma $-products
MSC: 54B10
MSC: 54C05
MSC: 54D30
idZBL: Zbl 1121.54019
idMR: MR2174528
.
Date available: 2009-05-05T16:52:51Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119544
.
Reference: [Ar1] Arhangel'skii A.V.: Topological Function Spaces.Kluwer Acad. Publ., Dordrecht, 1992. MR 1485266
Reference: [Ar2] Arhangel'skii A.V.: On Lindelöf property and spread in $C_p$-theory.Topology Appl. 74:1 (1996), 83-90. MR 1425928
Reference: [Ba] Baturov D.P.: On subspaces of function spaces (in Russian).Vestnik Moskov. Univ. Ser. I Mat. Mekh. 42:4 (1987), 66-69. MR 0913076
Reference: [En] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [Fa] Fabian M.: Gateaux Differentiability of Convex Functions and Topology, Weak Asplund Spaces.Wiley, New York, 1997. Zbl 0883.46011, MR 1461271
Reference: [Gr1] Gruenhage G.: Generalized Metric Spaces.Handbook of Set-Theoretic Topology, edited by K. Kunen and J.E. Vaughan, Elsevier Sci. Publ., B.V., Amsterdam, 1984, pp.423-501. Zbl 0794.54034, MR 0776629
Reference: [Gr2] Gruenhage G.: Spaces having a small diagonal.preprint. Zbl 1028.54025, MR 1919300
Reference: [Gu1] Gul'ko S.P.: On the properties of some function spaces.Soviet Math. Dokl. 19:6 (1978), 1420-1424. Zbl 0421.54013, MR 0514481
Reference: [Gu2] Gul'ko S.P.: On the structure of spaces of continuous functions and their complete paracompactness.Russian Math. Surveys 34:6 (1979), 36-44. Zbl 0446.46014, MR 0562814
Reference: [Ju] Juhász I.: Cardinal Functions in Topology - Ten Years Later.Mathematical Centre Tracts 123, Amsterdam, 1980. MR 0576927
Reference: [Sh] Shapirovsky B.E.: Special types of embeddings in Tychonoff cubes, subspaces of $\Sigma$-products and cardinal invariants.Colloq. Math. Soc. Janos Bolyai 23 (1978), 1055-1086. MR 0588855
Reference: [So1] Sokolov G.A.: On Lindelöf spaces of continuous functions (in Russian).Matem. Zametki 39:6 (1986), 887-894. MR 0855936
Reference: [So2] Sokolov G.A.: Lindelöf property and the iterated continuous function spaces.Fund. Math. 143 (1993), 87-95. Zbl 0841.54011, MR 1234993
Reference: [Tk1] Tkachuk V.V.: Calibers of spaces of functions and the metrization problem for compact subsets of $C_p(X)$.Vestnik Moskov. Univ. 43:3 (1988), 21-24. MR 0966861
Reference: [Tk2] Tkachuk V.V.: Behaviour of the Lindelöf $\Sigma$-property in iterated function spaces.Topology Appl. 107 (2000), 297-305. MR 1779816
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-3_12.pdf 245.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo