Previous |  Up |  Next

Article

Title: Complete hypersurfaces with constant scalar curvature in a sphere (English)
Author: Liu, Ximin
Author: Li, Hongxia
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 3
Year: 2005
Pages: 567-575
.
Category: math
.
Summary: In this paper, by using Cheng-Yau's self-adjoint operator $\square$, we study the complete hypersurfaces in a sphere with constant scalar curvature. (English)
Keyword: hypersurface
Keyword: sphere
Keyword: scalar curvature
MSC: 53A10
MSC: 53C21
MSC: 53C40
MSC: 53C42
idZBL: Zbl 1121.53006
idMR: MR2174533
.
Date available: 2009-05-05T16:53:24Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119549
.
Reference: [1] Alencar H., do Carmo M.P.: Hypersurfaces with constant mean curvature in spheres.Proc. Amer. Math. Soc. 120 (1994), 1223-1229. Zbl 0802.53017, MR 1172943
Reference: [2] Cheng S.Y., Yau S.T.: Hypersurfaces with constant scalar curvature.Math. Ann. 225 (1977), 195-204. Zbl 0349.53041, MR 0431043
Reference: [3] Hou Z.H.: Hypersurfaces in sphere with constant mean curvature.Proc. Amer. Math. Soc. 125 (1997), 1193-1196. MR 1363169
Reference: [4] Lawson H.B., Jr.: Local rigidity theorems for minimal hypersurfaces.Ann. of Math. (2) 89 (1969), 187-197. Zbl 0174.24901, MR 0238229
Reference: [5] Li H.: Hypersurfaces with constant scalar curvature in space forms.Math. Ann. 305 (1996), 665-672. Zbl 0864.53040, MR 1399710
Reference: [6] Nomizu K., Smyth B.: A formula for Simon's type and hypersurfaces.J. Differential Geom. 3 (1969), 367-377. MR 0266109
Reference: [7] Okumuru M.: Hypersurfaces and a pinching problem on the second fundamental tensor.Amer. J. Math. 96 (1974), 207-213. MR 0353216
Reference: [8] Omori H.: Isometric immersions of Riemannian manifolds.J. Math. Soc. Japan 19 (1967), 205-214. Zbl 0154.21501, MR 0215259
Reference: [9] Simons J.: Minimal varieties in Riemannian manifolds.Ann. of Math. (2) 88 (1968), 62-105. Zbl 0181.49702, MR 0233295
Reference: [10] Yau S.T.: Harmonic functions on complete Riemannian manifolds.Comm. Pure Appl. Math. 28 (1975), 201-228. Zbl 0291.31002, MR 0431040
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-3_17.pdf 189.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo