Previous |  Up |  Next

Article

Title: Diophantine equation $\frac{q^n-1}{q-1}=y$ for four prime divisors of $y-1$ (English)
Author: Polický, Zdeněk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 3
Year: 2005
Pages: 577-588
.
Category: math
.
Summary: In this paper the special diophantine equation $\frac{q^{n}-1}{q-1}=y$ with integer coefficients is discussed and integer solutions are sought. This equation is solved completely just for four prime divisors of $y-1$. (English)
Keyword: diophantine equation
Keyword: Fermat and Mersenne primes
Keyword: Catalan conjecture
MSC: 11A41
MSC: 11D41
MSC: 11D45
MSC: 11D61
MSC: 11D72
idZBL: Zbl 1121.11031
idMR: MR2174534
.
Date available: 2009-05-05T16:53:29Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119550
.
Reference: [1] Bennett M.: Rational approximation to algebraic number of small height: The diophantine equation $|ax^n-by^n|=1$.J. Reine Angew. Math. 535 (2001), 1-49. Zbl 1009.05033, MR 1837094
Reference: [2] Bilu Y.F.: Catalan's Conjecture.Séminaire Bourbaki, 55ème année, 909, 2002. Zbl 1094.11014
Reference: [3] Bugeaud Y.: Linear forms in p-adic logarithms and the diophantine equation $(x^n-1)/(x-1)=y^q$.Math. Proc. Cambridge Philos. Soc. 127 (1999), 373-381. MR 1713116
Reference: [4] Bugeaud Y., Mignotte M.: On the diophantine equation $(x^n-1)/(x-1)=y^q$ with negative $x$.Proceedings of the Millennial Conference on Number Theory, Urbana-Champaign, IL, USA, 2002, pp.145-151. Zbl 1064.11030, MR 1956223
Reference: [5] Bugeaud Y., Mignotte M., Roy Y., Shorey T.N.: On the diophantine equation $(x^n-1)/(x-1)=y^q$.Math. Proc. Cambridge Philos. Soc. 127 (1999), 353-372. MR 1713115
Reference: [6] Bugeaud Y., Mignotte M., Roy Y.: On the diophantine equation $(x^n-1)/(x-1)=y^q$.Pacific J. Math. 193 (2000), 257-268. MR 1755817
Reference: [7] Crescenzo P.: A diophantine equation arises in the theory of finite groups.Advances in Math. 17 (1975), 25-29. MR 0371812
Reference: [8] Dickson L.E.: History of the Theory of Numbers.vol 2, AMS Chelsea, Providence, 1999. Zbl 0958.11500
Reference: [9] Khosravi A., Khosravi B.: On the diophantine equation $(q^n-1)/(q-1)=y$.Comment. Math. Univ. Carolinae 44 (2003), 1 1-7. MR 2045841
Reference: [10] Křížek M., Luca F., Somer L.: 17 Lectures on Fermat Numbers: From Number Theory to Geometry.Springer, New York, 2001. MR 1866957
Reference: [11] Ligh S., Neal L.: A note on Mersenne numbers.Math. Mag. 47 (1974), 231-233. Zbl 0292.10013, MR 0347728
Reference: [12] Ljunggren W.: Noen Setninger om ubestemte likninger av formen $(x^n-1)/(x-1)=y^q$.Norsk. Mat. Tidsskr. 25 (1943), 17-20.
Reference: [13] Nagell T.: Note sur l'equation indéterminée $(x^n-1)/(x-1)=y^q$.Norsk. Mat. Tidsskr. 2 (1920), 75-78.
Reference: [14] Polický Z.: Exercises of division theory leading to brand new results.Proceedings of the International Conference The Mathematics Education into the 21st Century Project; Brno, Czech Republic, 2003, pp.231-234.
Reference: [15] Ribenboim P.: The New Book of Prime Number Records.Springer, New York, 1996. Zbl 0856.11001, MR 1377060
Reference: [16] Saradha N., Shorey T.N.: The equation $(x^n-1)/(x-1)=y^q$ with $x$ square.Math. Proc. Cambridge Philos. Soc. 125 (1999), 1-19. MR 1645497
Reference: [17] Shorey T.N.: Exponential diophantine equation involving product of consecutive integers and related equations.Bambah, R.P. et al., Number theory; Birkhäuser, Trends in Mathematics, Basel, 2000, pp.463-495. MR 1764814
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-3_18.pdf 301.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo