Previous |  Up |  Next

Article

Title: Some results on the recognizability of the linear groups over the binary field (English)
Author: Darafsheh, M. R.
Author: Farjami, Y.
Author: Khademi, M.
Author: Moghaddamfar, A. R.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 4
Year: 2005
Pages: 589-600
.
Category: math
.
Summary: In this paper, we first find the set of orders of all elements in some special linear groups over the binary field. Then, we will prove the characterizability of the special linear group $\operatorname{PSL}(13,2)$ using only the set of its element orders. (English)
Keyword: element order
Keyword: prime graph
Keyword: projective special linear group
MSC: 05C25
MSC: 20D05
MSC: 20D06
MSC: 20D60
idZBL: Zbl 1106.20009
idMR: MR2259492
.
Date available: 2009-05-05T16:53:40Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119552
.
Reference: [1] Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A.: Atlas of Finite Groups.Clarendon Press, Oxford, 1985. Zbl 0568.20001, MR 0827219
Reference: [2] Darafsheh M.R.: Some conjugacy classes in groups associated with the general linear groups.Algebras Groups Geom. 15 (1998), 183-199. Zbl 0995.20027, MR 1676998
Reference: [3] Darafsheh M.R., Moghaddamfar A.R.: Characterization of the groups $PSL_5(2)$, $PSL_6(2)$ and $PSL_7(2)$.Comm. Algebra 29 1 (2001), 465-475. MR 1842510
Reference: [4] Darafsheh M.R., Moghaddamfar A.R.: Corrigendum to: ``Characterization of the groups $PSL_5(2)$, $PSL_6(2)$ and $PSL_7(2)$''.Comm. Algebra 32 9 (2003), 4651-4653. MR 1995557
Reference: [5] Darafsheh M.R., Moghaddamfar A.R.: A characterization of groups related to the linear groups $PSL(n,2)$, $n=5,6,7,8$.Pure Math. Appl. 11 4 (2000), 629-637. MR 1876305
Reference: [6] Dornhoff L.: Group Representation Theory. Part A: Ordinary Representation Theory.Marcel Dekker, New York, 1971. MR 0347959
Reference: [7] Green J.A.: The characters of the finite general linear groups.Trans. Amer. Math. Soc. 80 (1955), 402-447. Zbl 0068.25605, MR 0072878
Reference: [8] Kondratév A.S.: On prime graph components of finite simple groups.Mat. Sb. (1989), 180 6 787-797. MR 1015040
Reference: [9] Kleidman P., Liebeck M.: The subgroup structure of the finite classical groups.London Math. Soc. Lecture Note Series 129, 1990. Zbl 0697.20004, MR 1057341
Reference: [10] Lidl R., Niederreiter H.: Finite Fields.Addison-Wesley, 1983. Zbl 1139.11053, MR 0746963
Reference: [11] Lucido M.S., Moghaddamfar A.R.: Groups with complete prime graph connected components.J. Group Theory 7 3 (2004), 373-384. Zbl 1058.20014, MR 2063403
Reference: [12] Mazurov V.D.: Characterization of groups by arithmetic properties.Algebra Colloq. 11 1 (2004), 129-140. MR 2058968
Reference: [13] Shi W.J.: A characteristic property of $A_{8}$.Acta Math. Sinica (N.S.) 3 (1987), 92-96. MR 0915854
Reference: [14] Shi W.J.: The characterization of the sporadic simple groups by their elements orders.Algebra Colloq. 1 2 (1994), 156-166. MR 1272290
Reference: [15] Shi W.J.: A characteristic property of $A_{5}$ (Chinese).J. Southwest-China Teachers University 11 (3) (1986), 11-14. MR 0915854
Reference: [16] Shi W.J., Wang L.H., Wang S.H.: The pure quantitative characterization of linear groups over the binary field (Chinese).Chinese Ann. Math. Ser. A 24 6 (2003), 675-682. MR 2032168
Reference: [17] Shi W.J.: A characterization property of $PSL_2(7)$.J. Austral. Math. Soc. 36 (1984), 354-356.
Reference: [18] Williams J.S.: Prime graph components of finite groups.J. Algebra 69 (1981), 487-513. Zbl 0471.20013, MR 0617092
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-4_1.pdf 237.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo