Previous |  Up |  Next

Article

Title: Groups with the weak minimal condition for non-subnormal subgroups II (English)
Author: Kurdachenko, Leonid A.
Author: Smith, Howard
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 4
Year: 2005
Pages: 601-605
.
Category: math
.
Summary: Let $G$ be a group with the property that there are no infinite descending chains of non-subnormal subgroups of $G$ for which all successive indices are infinite. The main result is that if $G$ is a locally (soluble-by-finite) group with this property then either $G$ has {\it all\/} subgroups subnormal or $G$ is a soluble-by-finite minimax group. This result fills a gap left in an earlier paper by the same authors on groups with the stated property. (English)
Keyword: subnormal subgroups
Keyword: soluble-by-finite groups
MSC: 20E15
MSC: 20F19
MSC: 20F22
idZBL: Zbl 1106.20023
idMR: MR2259493
.
Date available: 2009-05-05T16:53:45Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119553
.
Reference: [DES] Dixon M.R., Evans M.J., Smith H.: Locally (soluble-by-finite) groups of finite rank.J. Algebra 182 (1996), 756-769. Zbl 0854.20037, MR 1398121
Reference: [KS1] Kurdachenko L.A., Smith H.: Groups with the weak minimal condition for non-subnormal subgroups.Ann. Mat. Pura Appl. 173 (1997), 299-312. Zbl 0939.20040, MR 1625608
Reference: [KS2] Kurdachenko L.A., Smith H.: Groups with the weak maximal condition for non-subnormal subgroups.Ricerche Mat. 47 (1998), 29-49. Zbl 0928.20025, MR 1760322
Reference: [Me] Merzlyakov Yu.I.: Locally soluble groups of finite rank.Algebra i Logika 3 (1964), 5-16; Erratum 8 (1969), 686-690. MR 0289647
Reference: [Mö] Möhres W.: Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind.Arch. Math. (Basel) 54 (1990), 232-235. MR 1037610
Reference: [R] Robinson D.J.S.: Finiteness conditions and generalized soluble groups.2 vols., Springer, Berlin, 1972. Zbl 0243.20033
Reference: [Z] Zai'cev D.I.: Theory of minimax groups.Ukrainian Math. J. 23 (1971), 536-542. MR 0294512
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-4_2.pdf 176.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo