Previous |  Up |  Next

Article

Title: On a weak form of uniform convergence (English)
Author: Fuka, Jaroslav
Author: Holický, Petr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 4
Year: 2005
Pages: 637-643
.
Category: math
.
Summary: The notion of $\Delta $-convergence of a sequence of functions is stronger than pointwise convergence and weaker than uniform convergence. It is inspired by the investigation of ill-posed problems done by A.N. Tichonov. We answer a question posed by M. Kat\v{e}tov around 1970 by showing that the only analytic metric spaces $X$ for which pointwise convergence of a sequence of continuous real valued functions to a (continuous) limit function on $X$ implies $\Delta $-convergence are $\sigma$-compact spaces. We show that the assumption of analyticity cannot be omitted. (English)
Keyword: continuous functions on metric spaces
Keyword: pointwise convergence
Keyword: $\Delta $-convergence
Keyword: analytic spaces
Keyword: Hurewicz theorem
Keyword: $K_\sigma $-spaces
MSC: 40A30
MSC: 54E35
MSC: 54H05
idZBL: Zbl 1121.54058
idMR: MR2259495
.
Date available: 2009-05-05T16:53:56Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119555
.
Reference: [1] Bartoszyński T., Judah H., Shelah S.: The Cichoń diagram.J. Symbolic Logic 58 (1993), 401-423. MR 1233917
Reference: [2] Fuka J.: On the $\delta $-convergence.Acta Universitatis Purkynianae 42, Czech-Polish Mathematical School, Ústí nad Labem, 1999, 63-64.
Reference: [3] Jech T.: Set Theory, Second Edition.Perspectives in Mathematical Logic, Springer, Berlin, 1997. MR 1492987
Reference: [4] Just W., Weese M.: Discovering Modern Set Theory. II.Graduate Studies in Mathematics, Vol. 18, American Mathematical Society, Providence, 1997. Zbl 0887.03036, MR 1474727
Reference: [5] Kechris A.S.: Classical Descriptive Set Theory.Springer, New York, 1995. Zbl 0819.04002, MR 1321597
Reference: [6] Martin D.A., Solovay R.M.: Internal Cohen extensions.Ann. Math. Logic 2 (1970), 143-178. Zbl 0222.02075, MR 0270904
Reference: [7] Solovay R.M., Tennenbaum S.: Iterated Cohen extensions and Souslin's problem.Ann. of Math. 94 (1971), 201-245. Zbl 0244.02023, MR 0294139
Reference: [8] Tichonov A.N.: On the regularization of ill-posed problems (Russian).Dokl. Akad. Nauk SSSR 153 (1963), 49-52. MR 0162378
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-4_4.pdf 206.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo