Title:
|
Dimension in algebraic frames, II: Applications to frames of ideals in $C(X)$ (English) |
Author:
|
Martínez, Jorge |
Author:
|
Zenk, Eric R. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
46 |
Issue:
|
4 |
Year:
|
2005 |
Pages:
|
607-636 |
. |
Category:
|
math |
. |
Summary:
|
This paper continues the investigation into Krull-style dimensions in algebraic frames. Let $L$ be an algebraic frame. $\operatorname{dim}(L)$ is the supremum of the lengths $k$ of sequences $p_0< p_1< \cdots <p_k$ of (proper) prime elements of $L$. Recently, Th. Coquand, H. Lombardi and M.-F. Roy have formulated a characterization which describes the dimension of $L$ in terms of the dimensions of certain boundary quotients of $L$. This paper gives a purely frame-theoretic proof of this result, at once generalizing it to frames which are not necessarily compact. This result applies to the frame $\Cal C_z(X)$ of all $z$-ideals of $C(X)$, provided the underlying Tychonoff space $X$ is Lindelöf. If the space $X$ is compact, then it is shown that the dimension of $\Cal C_z(X)$ is at most $n$ if and only if $X$ is scattered of Cantor-Bendixson index at most $n+1$. If $X$ is the topological union of spaces $X_i$, then the dimension of $\Cal C_z(X)$ is the supremum of the dimensions of the $\Cal C_z(X_i)$. This and other results apply to the frame of all $d$-ideals $\Cal C_d(X)$ of $C(X)$, however, not the characterization in terms of boundaries. An explanation of this is given within, thus marking some of the differences between these two frames and their dimensions. (English) |
Keyword:
|
dimension of a frame |
Keyword:
|
$z$-ideals |
Keyword:
|
scattered space |
Keyword:
|
natural typing of open sets |
MSC:
|
03G10 |
MSC:
|
06D22 |
MSC:
|
16P60 |
MSC:
|
54B35 |
MSC:
|
54C30 |
idZBL:
|
Zbl 1121.06009 |
idMR:
|
MR2259494 |
. |
Date available:
|
2009-05-05T16:53:51Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119554 |
. |
Reference:
|
[AB91] Adams M.E., Beazer R.: Congruence properties of distributive double $p$-algebras.Czechoslovak Math. J. 41 (1991), 395-404. Zbl 0758.06008, MR 1117792 |
Reference:
|
[BP04] Ball R.N., Pultr A.: Forbidden forests in Priestley spaces.Cah. Topol. Géom. Différ. Catég. 45 1 (2004), 2-22. Zbl 1062.06020, MR 2040660 |
Reference:
|
[BKW77] Bigard A., Keimel K., Wolfenstein S.: Groupes et anneaux réticulés.Lecture Notes in Mathematics 608, Springer, Berlin-Heidelberg-New York, 1977. Zbl 0384.06022, MR 0552653 |
Reference:
|
[Bl76] Blair R.L.: Spaces in which special sets are $z$-embedded.Canad. J. Math. 28 (1976), 673-690. Zbl 0359.54009, MR 0420542 |
Reference:
|
[BlH74] Blair R.L., Hager A.W.: Extensions of zerosets and of real valued functions.Math. Z. 136 (1974), 41-57. MR 0385793 |
Reference:
|
[CL02] Coquand Th., Lombardi H.: Hidden constructions in abstract algebra: Krull dimension of distributive lattices and commutative rings.Commutative Ring Theory and Applications (M. Fontana, S.-E. Kabbaj, S. Wiegand, Eds.), pp.477-499; Lecture Notes in Pure and Appl. Math., 231, Marcel Dekker, New York, 2003. MR 2029845 |
Reference:
|
[CLR03] Coquand Th., Lombardi H., Roy M.-F.: Une caractérisation élémentaire de la dimension de Krull.preprint. |
Reference:
|
[D95] Darnel M.: Theory of Lattice-Ordered Groups.Marcel Dekker, New York, 1995. Zbl 0810.06016, MR 1304052 |
Reference:
|
[En89] Engelking R.: General Topology.Sigma Series in Pure Math. 6, Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[Es98] Escardó M.H.: Properly injective spaces and function spaces.Topology Appl. 89 (1998), 75-120. MR 1641443 |
Reference:
|
[GJ76] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Mathematics 43, Springer, Berlin-Heidelberg-New York, 1976. Zbl 0327.46040, MR 0407579 |
Reference:
|
[HJ61] Henriksen M., Johnson D.G.: On the structure of a class of archimedean lattice-ordered algebras.Fund. Math. 50 (1961), 73-94. Zbl 0099.10101, MR 0133698 |
Reference:
|
[MLMW94] Henriksen M., Larson S., Martínez J., Woods R.G.: Lattice-ordered algebras that are subdirect products of valuation domains Trans. Amer. Math. Soc..345 (1994), 1 195-221. MR 1239640 |
Reference:
|
[HMW03] Henriksen M., Martínez J., Woods R.G.: Spaces $X$ in which all prime $z$-ideals of $C(X)$ are either minimal or maximal.Comment. Math. Univ. Carolinae 44 2 (2003), 261-294. MR 2026163 |
Reference:
|
[HW04] Henriksen M., Woods R.G.: Cozero complemented spaces: when the space of minimal prime ideals of a $C(X)$ is compact.Topology Appl. 141 (2004), 147-170. Zbl 1067.54015, MR 2058685 |
Reference:
|
[HuP80a] Huijsmans C.B., de Pagter B.: On $z$-ideals and $d$-ideals in Riesz spaces, I.Indag. Math. 42 2 (1980), 183-195. Zbl 0442.46022, MR 0577573 |
Reference:
|
[HuP80b] Huijsmans C.B., de Pagter B.: On $z$-ideals and $d$-ideals in Riesz spaces, II.Indag. Math. 42 4 (1980), 391-408. Zbl 0451.46003, MR 0597997 |
Reference:
|
[J82] Johnstone P.J.: Stone Spaces.Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge Univ. Press, Cambridge, 1982. Zbl 0586.54001, MR 0698074 |
Reference:
|
[JT84] Joyal A., Tierney M.: An extension of the Galois theory of Grothendieck.Mem. Amer. Math. Soc. 51 309 (1984), 71 pp. Zbl 0541.18002, MR 0756176 |
Reference:
|
[Ko89] Koppelberg S.: Handbook of Boolean Algebras, I.J.D. Monk, Ed., with R. Bonnet; North Holland, Amsterdam-New York-Oxford-Tokyo, 1989. MR 0991565 |
Reference:
|
[M73a] Martínez J.: Archimedean lattices.Algebra Universalis 3 (1973), 247-260. MR 0349503 |
Reference:
|
[M04a] Martínez J.: Dimension in algebraic frames.Czechoslovak Math. J., to appear. MR 2291748 |
Reference:
|
[M04b] Martínez J.: Unit and kernel systems in algebraic frames.Algebra Universalis, to appear. MR 2217275 |
Reference:
|
[MZ03] Martínez J., Zenk E.R.: When an algebraic frame is regular.Algebra Universalis 50 (2003), 231-257. Zbl 1092.06011, MR 2037528 |
Reference:
|
[MZ06] Martínez J., Zenk E.R.: Dimension in algebraic frames, III: dimension theories.in preparation. |
Reference:
|
[Mr70] Mrowka S.: Some comments on the author's example of a non-$R$-compact space.Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys. 18 (1970), 443-448. MR 0268852 |
Reference:
|
[Se59] Semadeni Z.: Sur les ensembles clairsemés.Rozprawy Mat. 19 (1959), 39 pp. Zbl 0137.16002, MR 0107849 |
Reference:
|
[Se71] Semadeni Z.: Banach Spaces of Continuous Functions.Polish Scientific Publishers, Warsaw, 1971. Zbl 0478.46014, MR 0296671 |
. |