Previous |  Up |  Next

Article

Title: Fixed points of demicontinuous nearly Lipschitzian mappings in Banach spaces (English)
Author: Sahu, D. R.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 4
Year: 2005
Pages: 653-666
.
Category: math
.
Summary: We introduce the classes of nearly contraction mappings and nearly asymptotically nonexpansive mappings. The class of nearly contraction mappings includes the class of contraction mappings, but the class of nearly asymptotically nonexpansive mappings contains the class of asymptotically nonexpansive mappings and is contained in the class of mappings of asymptotically nonexpansive type. We study the existence of fixed points and the structure of fixed point sets of mappings of these classes in Banach spaces. Our results improve various celebrated results of fixed point theory in the context of demicontinuity. (English)
Keyword: asymptotically nonexpansive mapping
Keyword: Banach contraction principle
Keyword: fixed point
Keyword: Lipschitzian mapping
Keyword: nearly Lipschitzian mapping
Keyword: nearly asymptotically nonexpansive mapping
Keyword: uniformly convex Banach space
MSC: 47H09
MSC: 47H10
MSC: 47H15
MSC: 47H17
MSC: 65J15
idZBL: Zbl 1123.47041
idMR: MR2259497
.
Date available: 2009-05-05T16:54:07Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119557
.
Reference: [1] Banach S.: Sur les operations dons les ensembes abstraits et leurs applications.Fund. Math. 3 (1922), 133-181.
Reference: [2] Bose S.C., Laskar S.K.: Fixed point theorems for certain class of mappings.J. Math. Phys. Sci. 19 (1985), 503-509. Zbl 0613.47048, MR 0873691
Reference: [3] Dominguez Benavides T., Lopez G., Xu H.K.: Weak uniform normal structure and iterative fixed points of nonexpansive mappings.Coll. Math. 68 (1995), 17-23. Zbl 0845.46006, MR 1311758
Reference: [4] Dominguez Benavides T., Xu H.K.: A new geometrical coefficient Banach spaces and its applications in fixed point theory.Nonlinear Anal. 25 (1995), 311-335. MR 1336528
Reference: [5] Browder F.E.: Nonexpansive nonlinear operators in Banach space.Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041-1044. MR 0187120
Reference: [6] Browder F.E.: Nonlinear operators and nonlinear equations of evolution.Proc. Amer. Math. Symp. Pure Math. XVIII, Amer. Math. Soc., Providence, 1976. Zbl 0327.47022, MR 0405188
Reference: [7] Goebel K., Kirk W.A.: A fixed point theorem of asymptotically nonexpansive mappings.Proc. Amer. Math. Soc. 35 (1972), 171-174. MR 0298500
Reference: [8] Göhde D.: Zum Prinzip der kontraktiven Abbildung.Math. Nachr. 30 (1965), 251-258. MR 0190718
Reference: [9] Gornicki J.: Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces.Comment. Math. Univ. Carolinae 30 (1989), 249-252. Zbl 0686.47045, MR 1014125
Reference: [10] Jung J.S., Sahu D.R., Thakur B.S.: Strong convergence theorems for asymptotically nonexpansive mappings in Banach spaces.Comm. Appl. Nonlinear Anal. 5 (1998), 53-69. Zbl 1110.47307, MR 1640821
Reference: [11] Jung J.S., Sahu D.R.: Fixed point theorem for nonlipchitzian semigroups without convexity.Indian J. Math. 40 2 (1998), 169-176. MR 1682602
Reference: [12] Kirk W.A.: A fixed point theorem for mappings which do not increase distances.Amer. Math. Monthly 72 (1965), 1004-1006. Zbl 0141.32402, MR 0189009
Reference: [13] Kirk W.A.: Fixed point theorem for non-Lipschitzian mappings of asymptotically nonexpansive type.Israel J. Math. 17 (1974), 339-346. MR 0346605
Reference: [14] Kirk W.A., Matinez Yanez C., Kim S.S.: Asymptotically non-expansive mappings.Nonlinear Anal. 33 (1998), 1345-1365.
Reference: [15] Lim T.C., Xu H.: Fixed point theorems for mappings of asymptotically nonexpansive mappings.Nonlinear Anal. 22 (1994), 1345-1355. MR 1280202
Reference: [16] Lin P.K., Tan K.K. Xu H.K.: Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings.Nonlinear Anal. 24 (1995), 929-946. Zbl 0865.47040, MR 1320697
Reference: [17] Rhoades B.E.: A fixed point theorem for asymptotically nonexpansive mappings.Kodai Math. J. 4 (1981), 293-297. Zbl 0472.47032, MR 0630249
Reference: [18] Schu J.: Iterative construction of fixed points of asymptotically nonexpansive mappings.J. Math. Anal. Appl. 158 (1991), 407-412. Zbl 0734.47036, MR 1117571
Reference: [19] Schu J.: Weak and strong convergence to fixed points of asymptotically nonexpansive mappings.Bull. Austral. Math. Soc. 43 (1991), 153-159. Zbl 0709.47051, MR 1086729
Reference: [20] Tan K.K., Xu H.K.: The nonlinear ergodic theorem for asymptotically nonexpansive mappings in Banach space.Proc. Amer. Math. Soc. 114 (1992), 399-404. MR 1068133
Reference: [21] Weissinger J.: Sur theorie and anwendung des interationsvertahrens.Math. Nachr. 8 (1952), 193-212. MR 0051431
Reference: [22] Xu H.K.: Existence and convergence for fixed points for mappings of asymptotically nonexpansive type.Nonlinear Anal. 16 (1991), 1139-1146. MR 1111624
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-4_6.pdf 232.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo