Previous |  Up |  Next

Article

Title: Property $(a)$ and dominating families (English)
Author: da Silva, Samuel Gomes
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 4
Year: 2005
Pages: 667-684
.
Category: math
.
Summary: Generalizations of earlier negative results on Property $(a)$ are proved and two questions on an $(a)$-version of Jones' Lemma are posed. We discuss these questions in the realm of locally compact spaces. Using dominating families of functions as a tool, we prove that under the assumptions ``$2^\omega$ is regular'' and ``$2^\omega < 2^{\omega_1}$'' the existence of a $T_1$ separable locally compact $(a)$-space with an uncountable closed discrete subset implies the existence of inner models with measurable cardinals. We also use cardinal invariants such as $\frak d$ to prove results in the class of locally compact spaces that strengthen, in such class, the negative results mentioned above. (English)
Keyword: property $(a)$
Keyword: dominating families
Keyword: small cardinals
Keyword: inner models of measurability
MSC: 03E04
MSC: 54A25
MSC: 54A35
MSC: 54D20
idZBL: Zbl 1121.54014
idMR: MR2259498
.
Date available: 2009-05-05T16:54:15Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119558
.
Reference: [C] Comfort W.W.: Cofinal families in certain function spaces.Comment. Math. Univ. Carolinae 29 4 (1988), 665-675. Zbl 0666.54002, MR 0982784
Reference: [CS] Cummings J., Shelah S.: Cardinal invariants above the continuum.Ann. Pure Appl. Logic 75 3 (1995), 251-268. Zbl 0835.03013, MR 1355135
Reference: [E] Engelking R.: General Topology.Heldermann Verlag, Sigma Series in Pure Mathematics 6, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [H] Hodel R.: Cardinal functions I.in: Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp.1-61. Zbl 0559.54003, MR 0776620
Reference: [JMS] Just W., Matveev M.V., Szeptycki P.J.: Some results on property $(a)$.Topology Appl. 100 1 (2000), 103-111. Zbl 0944.54014, MR 1731705
Reference: [JP] Jech T., Prikry K.: Cofinality of the partial ordering of functions from $ømega _1$ into $ømega $ under eventual domination.Math. Proc. Cambridge Philos. Soc. 95 1 (1984), 25-32. MR 0727077
Reference: [M94] Matveev M.V.: Absolutely countably compact spaces.Topology Appl. 58 1 (1994), 81-92. Zbl 0801.54021, MR 1280711
Reference: [M97] Matveev M.V.: Some questions on property $(a)$.Questions Answers Gen. Topology 15 2 (1997), 103-111. Zbl 1002.54016, MR 1472172
Reference: [SV] Szeptycki P.J., Vaughan J.E.: Almost disjoint families and property $(a)$.Fund. Math. 158 3 (1998), 229-240. Zbl 0933.54005, MR 1663330
Reference: [vD] van Douwen E.K.: The integers and topology.in: Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp.111-167. Zbl 0561.54004, MR 0776622
Reference: [vMR] van Mill J., Reed G.M. (editors): Open Problems in Topology.North-Holland, Amsterdam, 1990. MR 1078636
Reference: [W] Watson W.S.: Separation in countably paracompact spaces.Trans. Amer. Math. Soc. 290 2 (1985), 831-842. Zbl 0583.54013, MR 0792831
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-4_7.pdf 294.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo