Previous |  Up |  Next

Article

Title: Cardinal invariants of universals (English)
Author: Fairey, Gareth
Author: Gartside, Paul
Author: Marsh, Andrew
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 4
Year: 2005
Pages: 685-703
.
Category: math
.
Summary: We examine when a space $X$ has a zero set universal parametrised by a metrisable space of minimal weight and show that this depends on the $\sigma$-weight of $X$ when $X$ is perfectly normal. We also show that if $Y$ parametrises a zero set universal for $X$ then $hL(X^n)\leq hd(Y)$ for all $n\in \Bbb N$. We construct zero set universals that have nice properties (such as separability or ccc) in the case where the space has a $K$-coarser topology. Examples are given including an $S$ space with zero set universal parametrised by an $L$ space (and vice versa). (English)
Keyword: zero set universals
Keyword: continuous function universals
Keyword: $S$ and $L$ spaces
Keyword: admissible topology
Keyword: cardinal invariants
Keyword: function spaces
MSC: 54A25
MSC: 54C30
MSC: 54C50
MSC: 54D65
MSC: 54D80
MSC: 54E35
idZBL: Zbl 1121.54029
idMR: MR2259499
.
Date available: 2009-05-05T16:54:20Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119559
.
Reference: [1] Arens R., Dugundji J.: Topologies for function spaces.Pacific J. Math. 1 (1951), 5-31. Zbl 0044.11801, MR 0043447
Reference: [2] Arhangel'skii A.V.: Topological Function Spaces.Kluwer Academic Publishers, 1992. MR 1485266
Reference: [3] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [4] Gartside P., Marsh A.: Compact universals.Topology Appl. 143 (2004), 1-3 1-13. Zbl 1056.54021, MR 2080279
Reference: [5] Gartside P.M., Knight R.W., Lo J.T.H.: Parametrizing open universals.Topology Appl. 119 (2002), 2 131-145. Zbl 0990.54003, MR 1886091
Reference: [6] Gartside P.M., Lo J.T.H.: The hierarchy of Borel universal sets.Topology Appl. 119 (2002), 117-129. Zbl 1006.54049, MR 1886090
Reference: [7] Gartside P.M., Lo J.T.H.: Open universal sets.Topology Appl. 129 (2003), 1 89-101. Zbl 1017.54020, MR 1955668
Reference: [8] Gruenhage G.: Continuously perfect normal spaces and some generalizations.Trans. Amer. Math. Soc. 224 (1976), 323-338. MR 0428275
Reference: [9] Gruenhage G.: Generalized metric spaces.in Handbook of Set-theoretic Topology, North Holland, Amsterdam, 1984, pp,423-501. Zbl 0794.54034, MR 0776629
Reference: [10] Gul'ko S.P.: On properties of subsets of $\Sigma $-products.Soviet Math. Dokl. 18 (1977), 1438-1442.
Reference: [11] Hodel R.: Cardinal functions I.in Handbook of Set-theoretic Topology, North Holland, Amsterdam, 1984, pp.1-61. Zbl 0559.54003, MR 0776620
Reference: [12] Marsh A.: Topology of function spaces.PhD. Thesis, Univ. Pittsburgh, 2004.
Reference: [13] Nakhmanson L.B.: The Suslin number and calibres of the ring of continuous functions.Izv. Vyssh. Uchebn. Zaved. Mat. 3 (1984), 49-55. MR 0743686
Reference: [14] Todorčević S.: Partition Problems in Topology.Contemporary Mathematics 84, Amer. Math. Soc., Providence, RI, 1989. MR 0980949
Reference: [15] Zenor P.: Some continuous separation axioms.Fund. Math. 90 2 (1975/1976), 143-158. MR 0394561
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-4_8.pdf 304.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo