Title:
|
Cardinal invariants of universals (English) |
Author:
|
Fairey, Gareth |
Author:
|
Gartside, Paul |
Author:
|
Marsh, Andrew |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
46 |
Issue:
|
4 |
Year:
|
2005 |
Pages:
|
685-703 |
. |
Category:
|
math |
. |
Summary:
|
We examine when a space $X$ has a zero set universal parametrised by a metrisable space of minimal weight and show that this depends on the $\sigma$-weight of $X$ when $X$ is perfectly normal. We also show that if $Y$ parametrises a zero set universal for $X$ then $hL(X^n)\leq hd(Y)$ for all $n\in \Bbb N$. We construct zero set universals that have nice properties (such as separability or ccc) in the case where the space has a $K$-coarser topology. Examples are given including an $S$ space with zero set universal parametrised by an $L$ space (and vice versa). (English) |
Keyword:
|
zero set universals |
Keyword:
|
continuous function universals |
Keyword:
|
$S$ and $L$ spaces |
Keyword:
|
admissible topology |
Keyword:
|
cardinal invariants |
Keyword:
|
function spaces |
MSC:
|
54A25 |
MSC:
|
54C30 |
MSC:
|
54C50 |
MSC:
|
54D65 |
MSC:
|
54D80 |
MSC:
|
54E35 |
idZBL:
|
Zbl 1121.54029 |
idMR:
|
MR2259499 |
. |
Date available:
|
2009-05-05T16:54:20Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119559 |
. |
Reference:
|
[1] Arens R., Dugundji J.: Topologies for function spaces.Pacific J. Math. 1 (1951), 5-31. Zbl 0044.11801, MR 0043447 |
Reference:
|
[2] Arhangel'skii A.V.: Topological Function Spaces.Kluwer Academic Publishers, 1992. MR 1485266 |
Reference:
|
[3] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[4] Gartside P., Marsh A.: Compact universals.Topology Appl. 143 (2004), 1-3 1-13. Zbl 1056.54021, MR 2080279 |
Reference:
|
[5] Gartside P.M., Knight R.W., Lo J.T.H.: Parametrizing open universals.Topology Appl. 119 (2002), 2 131-145. Zbl 0990.54003, MR 1886091 |
Reference:
|
[6] Gartside P.M., Lo J.T.H.: The hierarchy of Borel universal sets.Topology Appl. 119 (2002), 117-129. Zbl 1006.54049, MR 1886090 |
Reference:
|
[7] Gartside P.M., Lo J.T.H.: Open universal sets.Topology Appl. 129 (2003), 1 89-101. Zbl 1017.54020, MR 1955668 |
Reference:
|
[8] Gruenhage G.: Continuously perfect normal spaces and some generalizations.Trans. Amer. Math. Soc. 224 (1976), 323-338. MR 0428275 |
Reference:
|
[9] Gruenhage G.: Generalized metric spaces.in Handbook of Set-theoretic Topology, North Holland, Amsterdam, 1984, pp,423-501. Zbl 0794.54034, MR 0776629 |
Reference:
|
[10] Gul'ko S.P.: On properties of subsets of $\Sigma $-products.Soviet Math. Dokl. 18 (1977), 1438-1442. |
Reference:
|
[11] Hodel R.: Cardinal functions I.in Handbook of Set-theoretic Topology, North Holland, Amsterdam, 1984, pp.1-61. Zbl 0559.54003, MR 0776620 |
Reference:
|
[12] Marsh A.: Topology of function spaces.PhD. Thesis, Univ. Pittsburgh, 2004. |
Reference:
|
[13] Nakhmanson L.B.: The Suslin number and calibres of the ring of continuous functions.Izv. Vyssh. Uchebn. Zaved. Mat. 3 (1984), 49-55. MR 0743686 |
Reference:
|
[14] Todorčević S.: Partition Problems in Topology.Contemporary Mathematics 84, Amer. Math. Soc., Providence, RI, 1989. MR 0980949 |
Reference:
|
[15] Zenor P.: Some continuous separation axioms.Fund. Math. 90 2 (1975/1976), 143-158. MR 0394561 |
. |