Previous |  Up |  Next

Article

Title: $C(X)$ can sometimes determine $X$ without $X$ being realcompact (English)
Author: Henriksen, Melvin
Author: Mitra, Biswajit
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 4
Year: 2005
Pages: 711-720
.
Category: math
.
Summary: As usual $C(X)$ will denote the ring of real-valued continuous functions on a Tychonoff space $X$. It is well-known that if $X$ and $Y$ are realcompact spaces such that $C(X)$ and $C(Y)$ are isomorphic, then $X$ and $Y$ are homeomorphic; that is $C(X)$ {\it determines\/} $X$. The restriction to realcompact spaces stems from the fact that $C(X)$ and $C(\upsilon X)$ are isomorphic, where $\upsilon X$ is the (Hewitt) realcompactification of $X$. In this note, a class of locally compact spaces $X$ that includes properly the class of locally compact realcompact spaces is exhibited such that $C(X)$ determines $X$. The problem of getting similar results for other restricted classes of generalized realcompact spaces is posed. (English)
Keyword: nearly realcompact space
Keyword: fast set
Keyword: SRM ideal
Keyword: continuous functions with pseudocompact support
Keyword: locally compact
Keyword: locally pseudocompact
MSC: 46E25
MSC: 54C35
MSC: 54C40
idZBL: Zbl 1121.54035
idMR: MR2259501
.
Date available: 2009-05-05T16:54:32Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119561
.
Reference: [BD92] Blair R., van Douwen E.: Nearly realcompact spaces.Topology Appl. 47 (1992), 209-221. Zbl 0772.54021, MR 1192310
Reference: [C68] Comfort W.W.: On the Hewitt realcompactification of a product space.Trans. Amer. Math. Soc. (1968), 107-118. Zbl 0157.53402, MR 0222846
Reference: [GJ76] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, New York, 1976. Zbl 0327.46040, MR 0407579
Reference: [JM73] Johnson D., Mandelker M.: Functions with pseudocompact support.General Topology and Appl. 3 (1973), 331-338. Zbl 0277.54009, MR 0331310
Reference: [Ma71] Mandelker M.: Supports of continuous functions.Trans. Amer. Math. Soc 156 (1971), 73-83. Zbl 0197.48703, MR 0275367
Reference: [Mi82] Misra P.R.: On isomorphism theorems for $C(X)$.Acta Math. Acad. Sci. Hungar. 39 (1982), 379-380. Zbl 0479.54011, MR 0653849
Reference: [S94] Schommer J.: Fast sets and nearly realcompact spaces.Houston J. Math. 20 (1994), 161-174. Zbl 0802.54016, MR 1272569
Reference: [SS01] Schommer J., Swardson M.A.: Almost* realcompactness.Comment. Math. Univ. Carolinae 42 (2001), 385-394. MR 1832157
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-4_10.pdf 224.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo