Title:
|
$C(X)$ can sometimes determine $X$ without $X$ being realcompact (English) |
Author:
|
Henriksen, Melvin |
Author:
|
Mitra, Biswajit |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
46 |
Issue:
|
4 |
Year:
|
2005 |
Pages:
|
711-720 |
. |
Category:
|
math |
. |
Summary:
|
As usual $C(X)$ will denote the ring of real-valued continuous functions on a Tychonoff space $X$. It is well-known that if $X$ and $Y$ are realcompact spaces such that $C(X)$ and $C(Y)$ are isomorphic, then $X$ and $Y$ are homeomorphic; that is $C(X)$ {\it determines\/} $X$. The restriction to realcompact spaces stems from the fact that $C(X)$ and $C(\upsilon X)$ are isomorphic, where $\upsilon X$ is the (Hewitt) realcompactification of $X$. In this note, a class of locally compact spaces $X$ that includes properly the class of locally compact realcompact spaces is exhibited such that $C(X)$ determines $X$. The problem of getting similar results for other restricted classes of generalized realcompact spaces is posed. (English) |
Keyword:
|
nearly realcompact space |
Keyword:
|
fast set |
Keyword:
|
SRM ideal |
Keyword:
|
continuous functions with pseudocompact support |
Keyword:
|
locally compact |
Keyword:
|
locally pseudocompact |
MSC:
|
46E25 |
MSC:
|
54C35 |
MSC:
|
54C40 |
idZBL:
|
Zbl 1121.54035 |
idMR:
|
MR2259501 |
. |
Date available:
|
2009-05-05T16:54:32Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119561 |
. |
Reference:
|
[BD92] Blair R., van Douwen E.: Nearly realcompact spaces.Topology Appl. 47 (1992), 209-221. Zbl 0772.54021, MR 1192310 |
Reference:
|
[C68] Comfort W.W.: On the Hewitt realcompactification of a product space.Trans. Amer. Math. Soc. (1968), 107-118. Zbl 0157.53402, MR 0222846 |
Reference:
|
[GJ76] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, New York, 1976. Zbl 0327.46040, MR 0407579 |
Reference:
|
[JM73] Johnson D., Mandelker M.: Functions with pseudocompact support.General Topology and Appl. 3 (1973), 331-338. Zbl 0277.54009, MR 0331310 |
Reference:
|
[Ma71] Mandelker M.: Supports of continuous functions.Trans. Amer. Math. Soc 156 (1971), 73-83. Zbl 0197.48703, MR 0275367 |
Reference:
|
[Mi82] Misra P.R.: On isomorphism theorems for $C(X)$.Acta Math. Acad. Sci. Hungar. 39 (1982), 379-380. Zbl 0479.54011, MR 0653849 |
Reference:
|
[S94] Schommer J.: Fast sets and nearly realcompact spaces.Houston J. Math. 20 (1994), 161-174. Zbl 0802.54016, MR 1272569 |
Reference:
|
[SS01] Schommer J., Swardson M.A.: Almost* realcompactness.Comment. Math. Univ. Carolinae 42 (2001), 385-394. MR 1832157 |
. |