Previous |  Up |  Next

Article

Title: A tree $\pi $-base for $\Bbb R^\ast$ without cofinal branches (English)
Author: Hernández-Hernández, Fernando
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 46
Issue: 4
Year: 2005
Pages: 721-734
.
Category: math
.
Summary: We prove an analogue to Dordal's result in P.L. Dordal, {\it A model in which the base-matrix tree cannot have cofinal branches\/}, J. Symbolic Logic {\bf 52} (1980), 651--664. He obtained a model of ZFC in which there is a tree $\pi$-base for $\Bbb N^{\ast}$ with no $\omega_{2}$ branches yet of height $\omega_{2}$. We establish that this is also possible for $\Bbb R^{\ast}$ using a natural modification of Mathias forcing. (English)
Keyword: distributivity of Boolean algebras
Keyword: cardinal invariants of the continuum
Keyword: Stone-Čech compactification
Keyword: tree $\pi$-base
MSC: 03E17
MSC: 06E15
MSC: 54A35
MSC: 54G05
idZBL: Zbl 1121.54057
idMR: MR2259502
.
Date available: 2009-05-05T16:54:37Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119562
.
Reference: [BH04] Balcar B., Hrušák M.: Distributivity of the algebra of regular open subsets of $\beta \Bbb R\setminus \Bbb R$.Topology Appl. 149 (2005), 1-7. Zbl 1071.54018, MR 2130854
Reference: [BJ95] Bartoszyński T., Judah H.: Set Theory. On the Structure of Real Line.A K Peters, Wellesley, MA, 1995. MR 1350295
Reference: [BPS80] Balcar B., Pelant J., Simon P.: The space of ultrafilters on N covered by nowhere dense sets.Fund. Math. 110 1 (1980), 11-24. Zbl 0568.54004, MR 0600576
Reference: [Dor87] Dordal P.L.: A model in which the base-matrix tree cannot have cofinal branches.J. Symbolic Logic 52 3 (1980), 651-664. MR 0902981
Reference: [Dow89] Dow A.: Tree $\pi $-bases for $\beta \bold N-\bold N$ in various models.Topology Appl. 33 1 (1989), 3-19. MR 1020980
Reference: [Dow98] Dow A.: The regular open algebra of $\beta \bold R \setminus \bold R$ is not equal to the completion of $\Cal P(ømega)/ {fin}$.Fund. Math. 157 1 (1998), 33-41. MR 1619290
Reference: [Gol93] Goldstern M.: Tools for your forcing construction.in Set Theory of the Reals (Ramat Gan, 1991), Israel Math. Conf. Proc., vol. 6, pp. 305-360; Bar-Ilan Univ., Ramat Gan, 1993. Zbl 0834.03016, MR 1234283
Reference: [She84] Shelah S.: On cardinal invariants of the continuum.in Axiomatic Set Theory (Boulder, Colo., 1983), Contemp. Math., vol. 31, pp. 183-207; Amer. Math. Soc., Providence, 1984. Zbl 0583.03035, MR 0763901
Reference: [She98] Shelah S.: Proper and Improper Forcing.second edition, Perspectives in Mathematical Logic, Springer, Berlin, 1998. Zbl 0889.03041, MR 1623206
Reference: [SS98] Shelah S., Spinas O.: The distributivity numbers of finite products of $\Cal P(ømega)/{fin}$.Fund. Math. 158 1 (1998), 81-93. MR 1641157
Reference: [SS00] Shelah S., Spinas O.: The distributivity numbers of $\Cal P(ømega)/{fin}$ and its square.Trans. Amer. Math. Soc. 352 5 (2000), 2023-2047 (electronic). Zbl 0943.03036, MR 1751223
Reference: [vMW83] van Mill J., Williams S.W.: A compact $F$-space not co-absolute with $\beta \bold N-\bold N$.Topology Appl. 15 1 (1983), 59-64. MR 0676966
Reference: [Wil82] Williams S.W.: Gleason spaces, and coabsolutes of $\beta \bold N\sim \bold N$.Trans. Amer. Math. Soc. 271 1 (1982), 83-100. MR 0648079
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_46-2005-4_11.pdf 283.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo