Title:
|
A tree $\pi $-base for $\Bbb R^\ast$ without cofinal branches (English) |
Author:
|
Hernández-Hernández, Fernando |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
46 |
Issue:
|
4 |
Year:
|
2005 |
Pages:
|
721-734 |
. |
Category:
|
math |
. |
Summary:
|
We prove an analogue to Dordal's result in P.L. Dordal, {\it A model in which the base-matrix tree cannot have cofinal branches\/}, J. Symbolic Logic {\bf 52} (1980), 651--664. He obtained a model of ZFC in which there is a tree $\pi$-base for $\Bbb N^{\ast}$ with no $\omega_{2}$ branches yet of height $\omega_{2}$. We establish that this is also possible for $\Bbb R^{\ast}$ using a natural modification of Mathias forcing. (English) |
Keyword:
|
distributivity of Boolean algebras |
Keyword:
|
cardinal invariants of the continuum |
Keyword:
|
Stone-Čech compactification |
Keyword:
|
tree $\pi$-base |
MSC:
|
03E17 |
MSC:
|
06E15 |
MSC:
|
54A35 |
MSC:
|
54G05 |
idZBL:
|
Zbl 1121.54057 |
idMR:
|
MR2259502 |
. |
Date available:
|
2009-05-05T16:54:37Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119562 |
. |
Reference:
|
[BH04] Balcar B., Hrušák M.: Distributivity of the algebra of regular open subsets of $\beta \Bbb R\setminus \Bbb R$.Topology Appl. 149 (2005), 1-7. Zbl 1071.54018, MR 2130854 |
Reference:
|
[BJ95] Bartoszyński T., Judah H.: Set Theory. On the Structure of Real Line.A K Peters, Wellesley, MA, 1995. MR 1350295 |
Reference:
|
[BPS80] Balcar B., Pelant J., Simon P.: The space of ultrafilters on N covered by nowhere dense sets.Fund. Math. 110 1 (1980), 11-24. Zbl 0568.54004, MR 0600576 |
Reference:
|
[Dor87] Dordal P.L.: A model in which the base-matrix tree cannot have cofinal branches.J. Symbolic Logic 52 3 (1980), 651-664. MR 0902981 |
Reference:
|
[Dow89] Dow A.: Tree $\pi $-bases for $\beta \bold N-\bold N$ in various models.Topology Appl. 33 1 (1989), 3-19. MR 1020980 |
Reference:
|
[Dow98] Dow A.: The regular open algebra of $\beta \bold R \setminus \bold R$ is not equal to the completion of $\Cal P(ømega)/ {fin}$.Fund. Math. 157 1 (1998), 33-41. MR 1619290 |
Reference:
|
[Gol93] Goldstern M.: Tools for your forcing construction.in Set Theory of the Reals (Ramat Gan, 1991), Israel Math. Conf. Proc., vol. 6, pp. 305-360; Bar-Ilan Univ., Ramat Gan, 1993. Zbl 0834.03016, MR 1234283 |
Reference:
|
[She84] Shelah S.: On cardinal invariants of the continuum.in Axiomatic Set Theory (Boulder, Colo., 1983), Contemp. Math., vol. 31, pp. 183-207; Amer. Math. Soc., Providence, 1984. Zbl 0583.03035, MR 0763901 |
Reference:
|
[She98] Shelah S.: Proper and Improper Forcing.second edition, Perspectives in Mathematical Logic, Springer, Berlin, 1998. Zbl 0889.03041, MR 1623206 |
Reference:
|
[SS98] Shelah S., Spinas O.: The distributivity numbers of finite products of $\Cal P(ømega)/{fin}$.Fund. Math. 158 1 (1998), 81-93. MR 1641157 |
Reference:
|
[SS00] Shelah S., Spinas O.: The distributivity numbers of $\Cal P(ømega)/{fin}$ and its square.Trans. Amer. Math. Soc. 352 5 (2000), 2023-2047 (electronic). Zbl 0943.03036, MR 1751223 |
Reference:
|
[vMW83] van Mill J., Williams S.W.: A compact $F$-space not co-absolute with $\beta \bold N-\bold N$.Topology Appl. 15 1 (1983), 59-64. MR 0676966 |
Reference:
|
[Wil82] Williams S.W.: Gleason spaces, and coabsolutes of $\beta \bold N\sim \bold N$.Trans. Amer. Math. Soc. 271 1 (1982), 83-100. MR 0648079 |
. |