Previous |  Up |  Next

Article

Title: The maximal regular ideal of some commutative rings (English)
Author: Osba, Emad Abu
Author: Henriksen, Melvin
Author: Alkam, Osama
Author: Smith, F. A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 1
Year: 2006
Pages: 1-10
.
Category: math
.
Summary: In 1950 in volume 1 of Proc. Amer. Math. Soc., B. Brown and N. McCoy showed that every (not necessarily commutative) ring $R$ has an ideal $\frak M (R)$ consisting of elements $a$ for which there is an $x$ such that $axa=a$, and maximal with respect to this property. Considering only the case when $R$ is commutative and has an identity element, it is often not easy to determine when $\frak M (R)$ is not just the zero ideal. We determine when this happens in a number of cases: Namely when at least one of $a$ or $1-a$ has a von Neumann inverse, when $R$ is a product of local rings (e.g., when $R$ is $\Bbb Z_{n}$ or $\Bbb Z_{n}[i]$), when $R$ is a polynomial or a power series ring, and when $R$ is the ring of all real-valued continuous functions on a topological space. (English)
Keyword: commutative rings
Keyword: von Neumann regular rings
Keyword: von Neumann local rings
Keyword: Gelfand rings
Keyword: polynomial rings
Keyword: power series rings
Keyword: rings of Gaussian integers (mod $n$)
Keyword: prime and maximal ideals
Keyword: maximal regular ideals
Keyword: pure ideals
Keyword: quadratic residues
Keyword: Stone-Čech compactification
Keyword: $C(X)$
Keyword: zerosets
Keyword: cozerosets
Keyword: $P$-spaces
MSC: 10A10
MSC: 13A15
MSC: 13Fxx
MSC: 16E50
MSC: 54G10
idZBL: Zbl 1150.13300
idMR: MR2223962
.
Date available: 2009-05-05T16:55:06Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119569
.
Reference: [AHA04] Abu Osba E., Henriksen M., Alkam O.: Combining local and von Neumann regular rings.Comm. Algebra 32 (2004), 2639-2653. MR 2099923
Reference: [AM69] Atiyah M., Macdonald J.: Introduction to Commutative Algebra.Addison-Wesley, Reading, Mass., 1969. Zbl 0238.13001, MR 0242802
Reference: [B81] Brewer J.: Power Series Over Commutative Rings.Marcel Dekker, New York, 1981. Zbl 0476.13015, MR 0612477
Reference: [BM50] Brown B., McCoy N.: The maximal regular ideal of a ring.Proc. Amer. Math. Soc. 1 (1950), 165-171. Zbl 0036.29702, MR 0034757
Reference: [C84] Contessa M.: On certain classes of PM rings.Comm. Algebra 12 (1984), 1447-1469. Zbl 0545.13001, MR 0744456
Reference: [DO71] DeMarco G., Orsatti A.: Commutative rings in which every maximal ideal is contained in a unique maximal ideal.Proc. Amer. Math. Soc. 30 (1971), 459-466. MR 0282962
Reference: [GJ76] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, New York, 1976. Zbl 0327.46040, MR 0407579
Reference: [H77] Henriksen M.: Some sufficient conditions for the Jacobson radical of a commutative ring with identity to contain a prime ideal.Portugaliae Math. 36 (1977), 257-269. Zbl 0448.13002, MR 0597848
Reference: [L58] Leveque W.: Topics in Number Theory.Addison-Wesley, Reading, Mass., 1958. Zbl 1009.11001
Reference: [M74] McDonald B.R.: Finite Rings with Identity.Marcel Dekker, New York, 1974. Zbl 0294.16012, MR 0354768
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-1_1.pdf 292.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo