Previous |  Up |  Next

Article

Title: Baireness of $C_k(X)$ for ordered $X$ (English)
Author: Granado, Michael
Author: Gruenhage, Gary
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 1
Year: 2006
Pages: 103-111
.
Category: math
.
Summary: We show that if $X$ is a subspace of a linearly ordered space, then $C_k(X)$ is a Baire space if and only if $C_k(X)$ is Choquet iff $X$ has the Moving Off Property. (English)
Keyword: Baire
Keyword: linearly ordered space
Keyword: compact-open topology
Keyword: Choquet
Keyword: Moving Off Property
MSC: 54C35
MSC: 54E52
MSC: 54F05
idZBL: Zbl 1150.54032
idMR: MR2223970
.
Date available: 2009-05-05T16:55:50Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119577
.
Reference: [B] Bouziad A.: Coincidence of the upper Kuratowski topology with the co-compact topology on compact sets, and the Prohorov property.Topology Appl. 120 (2002), 283-299. Zbl 1057.54016, MR 1897264
Reference: [EL] Engelking R., Lutzer D.: Paracompactness in ordered spaces.Fund. Math. 94 (1977), 49-58. Zbl 0351.54014, MR 0428278
Reference: [G$_1$] Gruenhage G.: Games, covering properties and Eberlein compacts.Topology Appl. 23 (1986), 291-297. Zbl 0604.54022, MR 0858337
Reference: [G$_2$] Gruenhage G.: The story of a topological game.Rocky Mountain J. Math., to appear. Zbl 1141.54020, MR 2305636
Reference: [GM] Gruenhage G., Ma D.K.: Baireness of $C_k(X)$ for locally compact $X$.Topology Appl. 80 (1997), 131-139. MR 1469473
Reference: [Ke] Kechris A.S.: Classical Descriptive Set Theory.Springer, New York, 1995. Zbl 0819.04002, MR 1321597
Reference: [Ku] Kunen K.: Set Theory.North-Holland, Amsterdam, 1980. Zbl 0960.03033, MR 0597342
Reference: [L] Lutzer D.J.: On generalized ordered spaces.Dissertationes Math. 89 (1971). Zbl 0228.54026, MR 0324668
Reference: [Ma] Ma D.K.: The Cantor tree, the $\gamma$-property, and Baire function spaces.Proc. Amer. Math. Soc. 119 (1993), 903-913. Zbl 0785.54019, MR 1165061
Reference: [MN] McCoy R.A., Ntantu I.: Completeness properties of function spaces.Topology Appl. 22 (1986), 191-206. Zbl 0621.54011, MR 0836326
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-1_9.pdf 276.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo