Previous |  Up |  Next

Article

Title: Topological structure of the space of lower semi-continuous functions (English)
Author: Sakai, Katsuro
Author: Uehara, Shigenori
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 1
Year: 2006
Pages: 113-126
.
Category: math
.
Summary: Let $\operatorname{L}(X)$ be the space of all lower semi-continuous extended real-valued functions on a Hausdorff space $X$, where, by identifying each $f$ with the epi-graph $\operatorname{epi}(f)$, $\operatorname{L}(X)$ is regarded the subspace of the space $\operatorname{Cld}^*_F(X \times \Bbb R)$ of all closed sets in $X \times \Bbb R$ with the Fell topology. Let $$ \operatorname{LSC}(X) = \{f\in \operatorname{L}(X) \mid f(X) \cap \Bbb R \neq \emptyset, f(X)\subset (-\infty,\infty]\} \text{ and} \ \operatorname{LSC}_{\operatorname{B}}(X) = \{f \in \operatorname{L}(X) \mid f(X) \text{ is a bounded subset of $\Bbb R$}\}. $$ We show that $\operatorname{L}(X)$ is homeomorphic to the Hilbert cube $Q = [-1,1]^\Bbb N$ if and only if $X$ is second countable, locally compact and infinite. In this case, it is proved that $(\operatorname{L}(X), \operatorname{LSC}(X), \operatorname{LSC}_{\operatorname{B}}(X))$ is homeomorphic to $(\operatorname{Cone} Q, Q\times (0,1), \Sigma \times (0,1))$ (resp. $(Q,s,\Sigma)$) if $X$ is compact (resp. $X$ is non-compact), where $\operatorname{Cone} Q = (Q \times \bold I)/(Q\times \{1\})$ is the cone over $Q$, $s = (-1,1)^\Bbb N$ is the pseudo-interior, $\Sigma = \{(x_i)_{i\in \Bbb N} \in Q \mid \sup_{i\in \Bbb N}|x_i| < 1\}$ is the radial-interior. (English)
Keyword: space of lower semi-continuous functions
Keyword: epi-graph
Keyword: Fell topology
Keyword: Hilbert cube
Keyword: pseudo-interior
Keyword: radial-interior
MSC: 54C35
MSC: 57N20
idZBL: Zbl 1150.57006
idMR: MR2223971
.
Date available: 2009-05-05T16:56:00Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119578
.
Reference: [1] Anderson R.D.: On sigma-compact subsets of infinite-dimensional spaces.unpublished.
Reference: [2] Beer G.: Topologies on Closed and Closed Convex Sets.Math. and its Appl. 268, Kluwer Acad. Publ., Dordrecht, 1993. Zbl 0792.54008, MR 1269778
Reference: [3] Chapman T.A.: Dense sigma-compact subsets in infinite-dimensional manifolds.Trans. Amer. Math. Soc. 154 (1971), 399-426. MR 0283828
Reference: [4] Curtis D.W.: Boundary sets in the Hilbert cube.Topology Appl. 20 (1985), 201-221. Zbl 0575.57008, MR 0804034
Reference: [5] Fell J.M.G.: A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space.Proc. Amer. Math. Soc. 13 (1962), 472-476. Zbl 0106.15801, MR 0139135
Reference: [6] Kubiś W., Sakai K., Yaguchi M.: Hyperspaces of separable Banach spaces with the Wijsman topology.Topology Appl. 148 (2005), 7-32. Zbl 1068.54011, MR 2118072
Reference: [7] Lawson J.D.: Topological semilattices with small subsemilattices.J. London Math. Soc. (2) 1 (1969), 719-724. MR 0253301
Reference: [8] van Mill J.: Infinite-Dimensional Topology, Prerequisites and Introduction.North-Holland Math. Library 43, Elsevier Sci. Publ. B.V., Amsterdam, 1989. Zbl 0663.57001, MR 0977744
Reference: [9] Sakai K., Yang Z.: Hyperspaces of non-compact metrizable spaces which are homeomorphic to the Hilbert cube.Topology Appl. 127 (2002), 331-342. MR 1941172
Reference: [10] Toruńczyk H.: On CE-images of the Hilbert cube and characterization of $Q$-manifolds.Fund. Math. 106 (1980), 31-40. MR 0585543
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-1_10.pdf 321.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo