Title:
|
Strict minimizers of order $m$ in nonsmooth optimization problems (English) |
Author:
|
Antczak, Tadeusz |
Author:
|
Kisiel, Krzysztof |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
47 |
Issue:
|
2 |
Year:
|
2006 |
Pages:
|
213-232 |
. |
Category:
|
math |
. |
Summary:
|
In the paper, some sufficient optimality conditions for strict minima of order $m$ in constrained nonlinear mathematical programming problems involving (locally Lipschitz) $(F,\rho )$-convex functions of order $m$ are presented. Furthermore, the concept of strict local minimizer of order $m$ is also used to state various duality results in the sense of Mond-Weir and in the sense of Wolfe for such nondifferentiable optimization problems. (English) |
Keyword:
|
nonsmooth programming |
Keyword:
|
strict local minimizer of order $m$ |
Keyword:
|
Clarke's generalized gradient |
Keyword:
|
$(F, \rho )$-convex function of order $m$ with respect to $\theta $ |
MSC:
|
49J52 |
MSC:
|
90C26 |
MSC:
|
90C29 |
MSC:
|
90C46 |
idZBL:
|
Zbl 1150.90007 |
idMR:
|
MR2241528 |
. |
Date available:
|
2009-05-05T16:56:53Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119588 |
. |
Reference:
|
[1] Auslender A.: Stability in mathematical programming with nondifferentiable data.SIAM J. Control Optim. 22 (1984), 239-254. Zbl 0538.49020, MR 0732426 |
Reference:
|
[2] Bazaraa M.S., Sherali H.D., Shetty C.M.: Nonlinear Programming: Theory and Algorithms.John Wiley and Sons, New York, 1991. Zbl 1140.90040, MR 2218478 |
Reference:
|
[3] Ben-Israel A., Mond B.: What is invexity?.J. Austral. Math. Soc. Ser. B 28 (1986), 1-9. Zbl 0603.90119, MR 0846778 |
Reference:
|
[4] Clarke F.H.: Optimization and Nonsmooth Analysis.John Wiley and Sons, New York, 1983. Zbl 0696.49002, MR 0709590 |
Reference:
|
[5] Craven B.D.: Nonsmooth multiobjective programming.Numer. Funct. Anal. Optim. 10 1-2 (1989), 49-64. Zbl 0645.90076, MR 0978802 |
Reference:
|
[6] Cromme L.: Strong uniqueness: a far-reaching criterion for the convergence of iterative procedures.Numer. Math. 29 (1978), 179-193. MR 0461890 |
Reference:
|
[7] Egudo R.R., Mond B.: Duality with generalized convexity.J. Austral. Math. Soc. Ser. B 28 (1986), 10-21. Zbl 0608.49012, MR 0846779 |
Reference:
|
[8] Hiriart-Urruty J.-B.: Refinements of necessary optimality conditions in nondifferentiable programming I.Appl. Math. Optim. 5 (1979), 63-82. Zbl 0389.90088, MR 0526428 |
Reference:
|
[9] Hanson M.A.: On sufficiency of the Kuhn-Tucker conditions.J. Math. Anal. Appl. 80 (1981), 545-550. Zbl 0463.90080, MR 0614849 |
Reference:
|
[10] Hanson M.A., Mond B.: Further generalizations of convexity in mathematical programming.J. Inform. Optim. Sci. 3 (1982), 25-32. Zbl 0475.90069, MR 0713163 |
Reference:
|
[11] Jeyakumar V.: Strong and weak invexity in mathematical programming.Math. Oper. Res. 55 (1985), 109-125. Zbl 0566.90086, MR 0811672 |
Reference:
|
[12] Jeyakumar V.: Equivalence of a saddle-points and optima, and duality for a class of non-smooth non-convex problems.J. Math. Anal. Appl. 130 (1988), 334-343. MR 0929939 |
Reference:
|
[13] Kaul R.N., Suneja S.K., Lalitha C.S.: Generalized nonsmooth invexity.J. Inform. Optim. Sci. 15 (1994), 1-17. Zbl 0852.90113, MR 1262012 |
Reference:
|
[14] Klatte D.: Stable local minimizers in semi-infinite optimization: regularity and second-order conditions.J. Comput. Appl. Math. 56 (1994), 137-157. Zbl 0823.90121, MR 1338641 |
Reference:
|
[15] Mangasarian O.L.: Nonlinear Programming.McGraw-Hill, New York, 1969. Zbl 0833.90108, MR 0252038 |
Reference:
|
[16] Mond B., Weir T.: Generalized concavity and duality.in: Generalized Concavity in Optimization and Economics, edited by S. Schaible and W.T. Ziemba, Academic Press, New York, 1981, pp.263-279. Zbl 0619.90062, MR 0652702 |
Reference:
|
[17] Preda V.: On efficiency and duality for multiobjective programs.J. Math. Anal. Appl. 166 (1992), 365-377. Zbl 0764.90074, MR 1160932 |
Reference:
|
[18] Singer I.: Abstract Convex Analysis, John Wiley and Sons, New York, 1997.. MR 1461544 |
Reference:
|
[19] Studniarski M.: Necessary and sufficient conditions for isolated local minima of nonsmooth functions.SIAM J. Control Optim. 24 (1986), 1044-1049. Zbl 0604.49017, MR 0854069 |
Reference:
|
[20] Studniarski M.: Sufficient conditions for the stability of local minimum points in nonsmooth optimization.Optimization 20 (1989), 27-35. Zbl 0679.90072, MR 0977217 |
Reference:
|
[21] Studniarski M.: Characterizations of strict local minima for some nonlinear programming problems.Nonlinear Anal. 30 (1997), 5363-5367 (Proc. 2nd World Congress of Nonlinear Analysts). Zbl 0914.90243, MR 1726039 |
Reference:
|
[22] Ward D.E.: Characterizations of strict local minima and necessary conditions for weak sharp minima.J. Optim. Theory Appl. 80 (1994), 551-571. Zbl 0797.90101, MR 1265176 |
Reference:
|
[23] Wolfe P.: A duality theorem for nonlinear programming.Quart. Appl. Math. 19 (1961), 239-244. MR 0135625 |
. |