Previous |  Up |  Next

Article

Title: Strict minimizers of order $m$ in nonsmooth optimization problems (English)
Author: Antczak, Tadeusz
Author: Kisiel, Krzysztof
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 2
Year: 2006
Pages: 213-232
.
Category: math
.
Summary: In the paper, some sufficient optimality conditions for strict minima of order $m$ in constrained nonlinear mathematical programming problems involving (locally Lipschitz) $(F,\rho )$-convex functions of order $m$ are presented. Furthermore, the concept of strict local minimizer of order $m$ is also used to state various duality results in the sense of Mond-Weir and in the sense of Wolfe for such nondifferentiable optimization problems. (English)
Keyword: nonsmooth programming
Keyword: strict local minimizer of order $m$
Keyword: Clarke's generalized gradient
Keyword: $(F, \rho )$-convex function of order $m$ with respect to $\theta $
MSC: 49J52
MSC: 90C26
MSC: 90C29
MSC: 90C46
idZBL: Zbl 1150.90007
idMR: MR2241528
.
Date available: 2009-05-05T16:56:53Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119588
.
Reference: [1] Auslender A.: Stability in mathematical programming with nondifferentiable data.SIAM J. Control Optim. 22 (1984), 239-254. Zbl 0538.49020, MR 0732426
Reference: [2] Bazaraa M.S., Sherali H.D., Shetty C.M.: Nonlinear Programming: Theory and Algorithms.John Wiley and Sons, New York, 1991. Zbl 1140.90040, MR 2218478
Reference: [3] Ben-Israel A., Mond B.: What is invexity?.J. Austral. Math. Soc. Ser. B 28 (1986), 1-9. Zbl 0603.90119, MR 0846778
Reference: [4] Clarke F.H.: Optimization and Nonsmooth Analysis.John Wiley and Sons, New York, 1983. Zbl 0696.49002, MR 0709590
Reference: [5] Craven B.D.: Nonsmooth multiobjective programming.Numer. Funct. Anal. Optim. 10 1-2 (1989), 49-64. Zbl 0645.90076, MR 0978802
Reference: [6] Cromme L.: Strong uniqueness: a far-reaching criterion for the convergence of iterative procedures.Numer. Math. 29 (1978), 179-193. MR 0461890
Reference: [7] Egudo R.R., Mond B.: Duality with generalized convexity.J. Austral. Math. Soc. Ser. B 28 (1986), 10-21. Zbl 0608.49012, MR 0846779
Reference: [8] Hiriart-Urruty J.-B.: Refinements of necessary optimality conditions in nondifferentiable programming I.Appl. Math. Optim. 5 (1979), 63-82. Zbl 0389.90088, MR 0526428
Reference: [9] Hanson M.A.: On sufficiency of the Kuhn-Tucker conditions.J. Math. Anal. Appl. 80 (1981), 545-550. Zbl 0463.90080, MR 0614849
Reference: [10] Hanson M.A., Mond B.: Further generalizations of convexity in mathematical programming.J. Inform. Optim. Sci. 3 (1982), 25-32. Zbl 0475.90069, MR 0713163
Reference: [11] Jeyakumar V.: Strong and weak invexity in mathematical programming.Math. Oper. Res. 55 (1985), 109-125. Zbl 0566.90086, MR 0811672
Reference: [12] Jeyakumar V.: Equivalence of a saddle-points and optima, and duality for a class of non-smooth non-convex problems.J. Math. Anal. Appl. 130 (1988), 334-343. MR 0929939
Reference: [13] Kaul R.N., Suneja S.K., Lalitha C.S.: Generalized nonsmooth invexity.J. Inform. Optim. Sci. 15 (1994), 1-17. Zbl 0852.90113, MR 1262012
Reference: [14] Klatte D.: Stable local minimizers in semi-infinite optimization: regularity and second-order conditions.J. Comput. Appl. Math. 56 (1994), 137-157. Zbl 0823.90121, MR 1338641
Reference: [15] Mangasarian O.L.: Nonlinear Programming.McGraw-Hill, New York, 1969. Zbl 0833.90108, MR 0252038
Reference: [16] Mond B., Weir T.: Generalized concavity and duality.in: Generalized Concavity in Optimization and Economics, edited by S. Schaible and W.T. Ziemba, Academic Press, New York, 1981, pp.263-279. Zbl 0619.90062, MR 0652702
Reference: [17] Preda V.: On efficiency and duality for multiobjective programs.J. Math. Anal. Appl. 166 (1992), 365-377. Zbl 0764.90074, MR 1160932
Reference: [18] Singer I.: Abstract Convex Analysis, John Wiley and Sons, New York, 1997.. MR 1461544
Reference: [19] Studniarski M.: Necessary and sufficient conditions for isolated local minima of nonsmooth functions.SIAM J. Control Optim. 24 (1986), 1044-1049. Zbl 0604.49017, MR 0854069
Reference: [20] Studniarski M.: Sufficient conditions for the stability of local minimum points in nonsmooth optimization.Optimization 20 (1989), 27-35. Zbl 0679.90072, MR 0977217
Reference: [21] Studniarski M.: Characterizations of strict local minima for some nonlinear programming problems.Nonlinear Anal. 30 (1997), 5363-5367 (Proc. 2nd World Congress of Nonlinear Analysts). Zbl 0914.90243, MR 1726039
Reference: [22] Ward D.E.: Characterizations of strict local minima and necessary conditions for weak sharp minima.J. Optim. Theory Appl. 80 (1994), 551-571. Zbl 0797.90101, MR 1265176
Reference: [23] Wolfe P.: A duality theorem for nonlinear programming.Quart. Appl. Math. 19 (1961), 239-244. MR 0135625
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-2_3.pdf 288.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo