Previous |  Up |  Next

Article

Title: On rings close to regular and $p$-injectivity (English)
Author: Ming, Roger Yue Chi
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 2
Year: 2006
Pages: 203-212
.
Category: math
.
Summary: The following results are proved for a ring $A$: (1) If $A$ is a fully right idempotent ring having a classical left quotient ring $Q$ which is right quasi-duo, then $Q$ is a strongly regular ring; (2) $A$ has a classical left quotient ring $Q$ which is a finite direct sum of division rings iff $A$ is a left $\operatorname{TC}$-ring having a reduced maximal right ideal and satisfying the maximum condition on left annihilators; (3) Let $A$ have the following properties: (a) each maximal left ideal of $A$ is either a two-sided ideal of $A$ or an injective left $A$-module; (b) for every maximal left ideal $M$ of $A$ which is a two-sided ideal, $A/M_A$ is flat. Then, $A$ is either strongly regular or left self-injective regular with non-zero socle; (4) $A$ is strongly regular iff $A$ is a semi-prime left or right quasi-duo ring such that for every essential left ideal $L$ of $A$ which is a two-sided ideal, $A/L_A$ is flat; (5) $A$ prime ring containing a reduced minimal left ideal must be a division ring; (6) A commutative ring is quasi-Frobenius iff it is a $\operatorname{YJ}$-injective ring with maximum condition on annihilators. (English)
Keyword: strongly regular
Keyword: $p$-injective
Keyword: $\operatorname{YJ}$-injective
Keyword: biregular
Keyword: von Neumann regular
MSC: 16D40
MSC: 16D50
MSC: 16E50
MSC: 16N60
idZBL: Zbl 1106.16003
idMR: MR2241527
.
Date available: 2009-05-05T16:56:47Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119587
.
Reference: [1] Arens R.F., Kaplansky I.: Topological representations of algebras.Trans. Amer. Math. Soc. 63 (1948), 457-481. MR 0025453
Reference: [2] Armendariz E.P., Fisher J.W.: Regular $P.I.$-rings.Proc. Amer. Math. Soc. 39 (1973), 247-251. Zbl 0264.16010, MR 0313305
Reference: [3] Baccella G.: Generalized $V$-rings and von Neumann regular rings.Rend. Sem. Mat. Univ. Padova 72 (1984), 117-133. Zbl 0547.16006, MR 0778337
Reference: [4] Beidar K., Wisbauer R.: Property semi-prime self-pp-modules.Comm. Algebra 23 (1995), 841-861. MR 1316735
Reference: [5] Chase S.U.: Direct product of modules.Trans. Amer. Math. Soc. 97 (1960), 457-473. MR 0120260
Reference: [6] Chen J.L., Ding N.Q.: On general principally injective rings.Comm. Algebra 27 (1999), 2097-2116. Zbl 0923.16001, MR 1683854
Reference: [7] Chen J.L., Zhou Y.Q., Zhu Z.M.: GP-injective rings need not be $p$-injective.Comm. Algebra 33 (2005), 2395-2402. Zbl 1076.16003, MR 2153231
Reference: [8] Faith C.: Algebra II: Ring Theory.Grundlehren der Mathematischen Wissenschaft, no. 191, Springer, Berlin-New York, 1976. MR 0427349
Reference: [9] Faith C.: Ring and things and a fine array of twentieth century associative algebra.Mathematical Surveys and Monographs, 65, American Mathematical Society, Providence, 1999. MR 1657671
Reference: [10] Goodearl K.: Ring Theory: Nonsingular Rings and Modules.Pure and Applied Mathematics, no. 33, Marcel Dekker, New York, 1976. Zbl 0336.16001, MR 0429962
Reference: [11] Goodearl K.: Von Neumann Regular Rings.Pitman, Boston, 1979. Zbl 0841.16008, MR 0533669
Reference: [12] Hirano Y.: On non-singular $p$-injective rings.Publ. Math. 38 (1994), 455-461.
Reference: [13] Kasch F.: Modules and Rings.London Mathematical Society Monographs, 17, Academic Press, London-New York, 1982. Zbl 0832.16002, MR 0667346
Reference: [14] Kim N.K., Nam S.B., Kim J.Y.: On simple singular GP-injective modules.Comm. Algebra 27 (1999), 2087-2096. Zbl 0923.16008, MR 1683853
Reference: [15] Matlis E.: Injective modules over Noetherian rings.Pacific J. Math. 8 (1958), 511-528. Zbl 0084.26601, MR 0099360
Reference: [16] Nicholson W.K, Yousif M.F.: Principally injective rings.J. Algebra 174 (1995), 77-93. Zbl 0839.16004, MR 1332860
Reference: [17] Puninski G., Wisbauer R., Yousif M.F.: On $p$-injective rings.Glasgow Math. J. 37 (1995), 373-378. Zbl 0847.16005, MR 1355393
Reference: [18] Sandomierski F.: Semi-simple maximal quotient rings.Trans. Amer. Math. Soc. 128 (1967), 112-120. MR 0214624
Reference: [19] Storrer H.H.: A note on quasi-Frobenius rings and ring epimorphism.Canad. Math. Bull. 12 (1969), 287-292. MR 0251075
Reference: [20] Tuganbaev A.: Rings close to regular.Mathematics and its Applications, 545, Kluwer Academic Publishers, Dordrecht, 2002. Zbl 1120.16012, MR 1958361
Reference: [21] Wisbauer R.: Foundations of module and ring theory.Gordon and Breach, New York, 1991. Zbl 0746.16001, MR 1144522
Reference: [22] Xue W.M.: A note on YJ-injectivity.Riv. Mat. Univ. Parma (6) 1 (1998), 31-37. Zbl 0929.16002, MR 1680954
Reference: [23] Xue W.M.: Rings related to quasi-Frobenius rings.Algebra Colloq. 5 (1998), 471-480. Zbl 0937.16028, MR 1683093
Reference: [24] Yousif M.F.: On SI-modules.Math. J. Okayama Univ. 28 (1986), 133-146. MR 0885022
Reference: [25] Yu H.P.: On quasi-duo rings.Glasgow Math. J. 37 (1995), 21-31. Zbl 0819.16001, MR 1316960
Reference: [26] Yue Chi Ming R.: A note on singular ideals.Tôhoku Math. J. 21 (1969), 337-342. Zbl 0164.34702, MR 0252444
Reference: [27] Yue Chi Ming R.: On annihilator ideals.Math. J. Okayama Univ. 19 (1976), 51-53. Zbl 0348.16008, MR 0435130
Reference: [28] Yue Chi Ming R.: On generalizations of $V$-rings and regular rings.Math. J. Okayama Univ. 20 (1978), 123-129. Zbl 0402.16014, MR 0519559
Reference: [29] Yue Chi Ming R.: A remark on decomposable modules.Publ. Inst. Math. (Beograd) 25 (39) (1979), 101-104. Zbl 0408.16018, MR 0542830
Reference: [30] Yue Chi Ming R.: On $V$-rings and prime rings.J. Algebra 62 (1980), 13-20. Zbl 0429.16018, MR 0561114
Reference: [31] Yue Chi Ming R.: On von Neumann regular rings, VI.Rend. Sem. Mat. Univ. Politec. Torino 39 (1981), 75-84. Zbl 0507.16012, MR 0706046
Reference: [32] Yue Chi Ming R.: On regular rings and Artinian rings.Riv. Mat. Univ. Parma (4) 8 (1982), 443-452. Zbl 0516.16006, MR 0706868
Reference: [33] Yue Chi Ming R.: On quasi-injectivity and von Neumann regularity.Monatsh. Math. 95 (1983), 25-32. Zbl 0498.16008, MR 0697346
Reference: [34] Yue Chi Ming R.: On regular rings and self-injective rings, II.Glas. Mat. 18 (38) (1983), 221-229. Zbl 0528.16006, MR 0733161
Reference: [35] Yue Chi Ming R.: On von Neumann regular rings, X.Collect. Math. 34 (1983), 81-94. Zbl 0544.16006, MR 0747858
Reference: [36] Yue Chi Ming R.: Annihilators and strongly regular rings.Rend. Sem. Fac. Sci. Cagliari 57 (1987), 51-59. Zbl 0683.16010, MR 0976539
Reference: [37] Yue Chi Ming R.: On $p$-injectivity, YJ-injectivity and quasi-Frobeniusean rings.Comment. Math. Univ. Carolin. 43 (2002), 33-42. Zbl 1068.16004, MR 1903305
Reference: [38] Zhang J.L., Wu J.: Generalizations of principal injectivity.Algebra Colloq. 6 (1999), 277-282. Zbl 0949.16002, MR 1809647
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-2_2.pdf 220.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo