Previous |  Up |  Next

Article

Title: $f$-derivations on rings and modules (English)
Author: Bland, Paul E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 3
Year: 2006
Pages: 379-390
.
Category: math
.
Summary: If $\tau $ is a hereditary torsion theory on $\bold{Mod}_{R}$ and $Q_{\tau }:\bold{Mod}_{R}\rightarrow \bold{Mod}_{R}$ is the localization functor, then we show that every $f$-derivation $d:M\rightarrow N$ has a unique extension to an $f_{\tau }$-derivation $d_{\tau }:Q_{\tau }(M)\rightarrow Q_{\tau }(N)$ when $\tau $ is a differential torsion theory on $\bold{Mod}_{R}$. Dually, it is shown that if $\tau $ is cohereditary and $C_{\tau }:\bold{Mod}_{R}\rightarrow \bold{Mod}_{R}$ is the colocalization functor, then every $f$-derivation $d:M\rightarrow N$ can be lifted uniquely to an $f_{\tau }$-derivation $d_{\tau }:C_{\tau }(M)\rightarrow C_{\tau }(N)$. (English)
Keyword: torsion theory
Keyword: differential filter
Keyword: localization
Keyword: colocalization
Keyword: $f$-derivation
MSC: 16D99
MSC: 16S90
MSC: 16W25
idZBL: Zbl 1106.16038
idMR: MR2281001
.
Date available: 2009-05-05T16:58:03Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119600
.
Reference: [1] Alin J.S., Armendariz E.P.: TTF classes over perfect rings.J. Austral. Math. Soc. 11 (1970), 499-503. Zbl 0221.16006, MR 0274495
Reference: [2] Anderson F.W., Fuller K.R.: Rings and Categories of Modules.Springer, Berlin, 1973. Zbl 0765.16001, MR 1245487
Reference: [3] Beachy J.A.: Cotorsion radical and projective modules.Bull. Austral Math. Soc. 5 (1971), 241-253. MR 0292879
Reference: [4] Bland P.E.: Differential torsion theory.J. Pure Appl. Algebra 204 (2006), 1 1-8. Zbl 1102.16020, MR 2183307
Reference: [5] Bland P.E.: Topics in Torsion Theory.Mathematical Research 103, Wiley-VCH, Berlin, 1998. Zbl 0899.16013, MR 1640903
Reference: [6] Dlab V.: A characterization of perfect rings.Pacific J. Math. 33 (1970), 79-88. Zbl 0209.07201, MR 0262297
Reference: [7] Gabriel P.: Des catégories abeliennes.Bull. Soc. Math. France 90 (1962), 323-448. Zbl 0201.35602, MR 0232821
Reference: [8] Bronn S.D.: Cotorsion theories.Pacific J. Math. 48 (1973), 355-363. Zbl 0285.16026, MR 0393131
Reference: [9] Golan J.S.: Extension of derivations to modules of quotients.Comm. Algebra 9 3 (1981), 275-281. Zbl 0454.16020, MR 0603349
Reference: [10] Golan J.S.: Torsion Theories.Pitman Monographs and Surveys in Pure and Applied Mathematics 29, Longman Scientific and Technical, Harlow, 1986. Zbl 0695.16021, MR 0880019
Reference: [11] Jans J.P.: Some aspects of torsion.Pacific J. Math. 15 (1965), 1249-1259. Zbl 0142.28002, MR 0191936
Reference: [12] Lam T.Y.: Lecture on Modules and Rings.Graduate Texts in Mathematics 189, Springer, New York, 1999.
Reference: [13] McMaster R.J.: Cotorsion theories and colocalization.Canad. J. Math. 27 (1971), 618-628. MR 0401818
Reference: [14] Ohtake K.: Colocalization and localization.J. Pure Appl. Algebra 11 (1977), 217-241. MR 0470027
Reference: [15] Sato M.: The concrete description of colocalization.Proc. Japan Acad. 52 (1976), 501-504. MR 0432688
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-3_2.pdf 240.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo