Previous |  Up |  Next

Article

Title: $\operatorname{Add}(U)$ of a uniserial module (English)
Author: Příhoda, Pavel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 3
Year: 2006
Pages: 391-398
.
Category: math
.
Summary: A module is called uniserial if it has totally ordered submodules in inclusion. We describe direct summands of $U^{(I)}$ for a uniserial module $U$. It appears that any such a summand is isomorphic to a direct sum of copies of at most two uniserial modules. (English)
Keyword: serial modules
Keyword: direct sum decomposition
MSC: 16D70
idZBL: Zbl 1106.16006
idMR: MR2281002
.
Date available: 2009-05-05T16:58:08Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119601
.
Reference: [1] Bass H.: Big projective modules are free.Illinois J. Math. 7 (1963), 24-31. Zbl 0115.26003, MR 0143789
Reference: [2] Dung N.V., Facchini A.: Direct sum decompositions of serial modules.J. Pure Appl. Algebra 133 (1998), 93-106. MR 1653699
Reference: [3] Facchini A.: Module Theory; Endomorphism Rings and Direct Sum Decompositions in Some Classes of Modules.Birkhäuser, Basel, 1998. Zbl 0930.16001, MR 1634015
Reference: [4] Příhoda P.: On uniserial modules that are not quasi-small.J. Algebra, to appear. MR 2225779
Reference: [5] Příhoda P.: A version of the weak Krull-Schmidt theorem for infinite families of uniserial modules.Comm. Algebra, to appear. MR 2224888
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-3_3.pdf 218.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo