Previous |  Up |  Next

Article

Title: Homomorphic images of $\Bbb R$-factorizable groups (English)
Author: Tkachenko, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 3
Year: 2006
Pages: 525-537
.
Category: math
.
Summary: It is well known that every $\Bbb R$-factorizable group is $\omega $-narrow, but not vice versa. One of the main problems regarding $\Bbb R$-factorizable groups is whether this class of groups is closed under taking continuous homomorphic images or, alternatively, whether every $\omega $-narrow group is a continuous homomorphic image of an $\Bbb R$-factorizable group. Here we show that the second hypothesis is definitely false. This result follows from the theorem stating that if a continuous homomorphic image of an $\Bbb R$-factorizable group is a $P$-group, then the image is also $\Bbb R$-factorizable. (English)
Keyword: $\Bbb R$-factorizable
Keyword: totally bounded
Keyword: $\omega $-narrow
Keyword: complete
Keyword: Lindelöf
Keyword: $P$-space
Keyword: realcompact
Keyword: Dieudonné-complete
Keyword: pseudo-$\omega _1$-compact
MSC: 22A05
MSC: 54C10
MSC: 54C45
MSC: 54D20
MSC: 54D60
MSC: 54G10
MSC: 54G20
MSC: 54H11
idZBL: Zbl 1150.54035
idMR: MR2281014
.
Date available: 2009-05-05T16:59:17Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119613
.
Reference: [1] Arhangel'skii A.V.: Topological Function Spaces.Math. Appl. (Soviet Series), 78, Kluwer, Dordrecht, 1992.
Reference: [2] Clay E., Clark B., Schneider V.: Using a set to construct a group topology.Kyungpook Math. J. 37 (1997), 113-116. Zbl 0876.22003, MR 1454775
Reference: [3] Comfort W.W.: Compactness-like properties for generalized weak topological sums.Pacific J. Math. 60 (1975), 31-37. Zbl 0307.54016, MR 0431088
Reference: [4] Guran I.: On topological groups close to being Lindelöf.Soviet Math. Dokl. 23 (1981), 173-175. Zbl 0478.22002
Reference: [5] Hernández C.: Topological groups close to being $\sigma$-compact.Topology Appl. 102 (2000), 101-111. MR 1739266
Reference: [6] Hernández C., Tkachenko M.G.: Subgroups of $\Bbb R$-factorizable groups.Comment. Math. Univ. Carolin. 39 (1998), 371-378. MR 1651979
Reference: [7] Leischner M.: Quotients of Raikov-complete topological groups.Note Mat. 13 (1993), 75-85. Zbl 0847.54030, MR 1283519
Reference: [8] Tkachenko M.G.: Factorization theorems for topological groups and their applications.Topology Appl. 38 (1991), 21-37. Zbl 0722.54039, MR 1093863
Reference: [9] Tkachenko M.G.: Subgroups, quotient groups and products of $\Bbb R$-factorizable groups.Topology Proc. 16 (1991), 201-231. MR 1206464
Reference: [10] Tkachenko M.G.: Introduction to topological groups.Topology Appl. 86 (1998), 179-231. Zbl 0955.54013, MR 1623960
Reference: [11] Tkachenko M.G.: $\Bbb R$-factorizable groups and subgroups of Lindelöf $P$-groups.Topology Appl. 136 (2004), 135-167. Zbl 1039.54020, MR 2023415
Reference: [12] Williams S.W.: Box products.in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan, eds., Chapter 4, North-Holland, Amsterdam, 1984, pp.169-200. Zbl 0769.54008, MR 0776623
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-3_15.pdf 249.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo