| Title:
|
Homomorphic images of $\Bbb R$-factorizable groups (English) |
| Author:
|
Tkachenko, M. |
| Language:
|
English |
| Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
| ISSN:
|
0010-2628 (print) |
| ISSN:
|
1213-7243 (online) |
| Volume:
|
47 |
| Issue:
|
3 |
| Year:
|
2006 |
| Pages:
|
525-537 |
| . |
| Category:
|
math |
| . |
| Summary:
|
It is well known that every $\Bbb R$-factorizable group is $\omega $-narrow, but not vice versa. One of the main problems regarding $\Bbb R$-factorizable groups is whether this class of groups is closed under taking continuous homomorphic images or, alternatively, whether every $\omega $-narrow group is a continuous homomorphic image of an $\Bbb R$-factorizable group. Here we show that the second hypothesis is definitely false. This result follows from the theorem stating that if a continuous homomorphic image of an $\Bbb R$-factorizable group is a $P$-group, then the image is also $\Bbb R$-factorizable. (English) |
| Keyword:
|
$\Bbb R$-factorizable |
| Keyword:
|
totally bounded |
| Keyword:
|
$\omega $-narrow |
| Keyword:
|
complete |
| Keyword:
|
Lindelöf |
| Keyword:
|
$P$-space |
| Keyword:
|
realcompact |
| Keyword:
|
Dieudonné-complete |
| Keyword:
|
pseudo-$\omega _1$-compact |
| MSC:
|
22A05 |
| MSC:
|
54C10 |
| MSC:
|
54C45 |
| MSC:
|
54D20 |
| MSC:
|
54D60 |
| MSC:
|
54G10 |
| MSC:
|
54G20 |
| MSC:
|
54H11 |
| idZBL:
|
Zbl 1150.54035 |
| idMR:
|
MR2281014 |
| . |
| Date available:
|
2009-05-05T16:59:17Z |
| Last updated:
|
2012-04-30 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119613 |
| . |
| Reference:
|
[1] Arhangel'skii A.V.: Topological Function Spaces.Math. Appl. (Soviet Series), 78, Kluwer, Dordrecht, 1992. |
| Reference:
|
[2] Clay E., Clark B., Schneider V.: Using a set to construct a group topology.Kyungpook Math. J. 37 (1997), 113-116. Zbl 0876.22003, MR 1454775 |
| Reference:
|
[3] Comfort W.W.: Compactness-like properties for generalized weak topological sums.Pacific J. Math. 60 (1975), 31-37. Zbl 0307.54016, MR 0431088 |
| Reference:
|
[4] Guran I.: On topological groups close to being Lindelöf.Soviet Math. Dokl. 23 (1981), 173-175. Zbl 0478.22002 |
| Reference:
|
[5] Hernández C.: Topological groups close to being $\sigma$-compact.Topology Appl. 102 (2000), 101-111. MR 1739266 |
| Reference:
|
[6] Hernández C., Tkachenko M.G.: Subgroups of $\Bbb R$-factorizable groups.Comment. Math. Univ. Carolin. 39 (1998), 371-378. MR 1651979 |
| Reference:
|
[7] Leischner M.: Quotients of Raikov-complete topological groups.Note Mat. 13 (1993), 75-85. Zbl 0847.54030, MR 1283519 |
| Reference:
|
[8] Tkachenko M.G.: Factorization theorems for topological groups and their applications.Topology Appl. 38 (1991), 21-37. Zbl 0722.54039, MR 1093863 |
| Reference:
|
[9] Tkachenko M.G.: Subgroups, quotient groups and products of $\Bbb R$-factorizable groups.Topology Proc. 16 (1991), 201-231. MR 1206464 |
| Reference:
|
[10] Tkachenko M.G.: Introduction to topological groups.Topology Appl. 86 (1998), 179-231. Zbl 0955.54013, MR 1623960 |
| Reference:
|
[11] Tkachenko M.G.: $\Bbb R$-factorizable groups and subgroups of Lindelöf $P$-groups.Topology Appl. 136 (2004), 135-167. Zbl 1039.54020, MR 2023415 |
| Reference:
|
[12] Williams S.W.: Box products.in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan, eds., Chapter 4, North-Holland, Amsterdam, 1984, pp.169-200. Zbl 0769.54008, MR 0776623 |
| . |