Title:
|
A semifilter approach to selection principles II: $\tau^\ast$-covers (English) |
Author:
|
Zdomskyy, Lyubomyr |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
47 |
Issue:
|
3 |
Year:
|
2006 |
Pages:
|
539-547 |
. |
Category:
|
math |
. |
Summary:
|
\font\mathsf=csss10 at 8pt Developing the idea of assigning to a large cover of a topological space a corresponding semifilter, we show that every Menger topological space has the property $\bigcup_{\operatorname{fin}}(\Cal O, \operatorname{T}^\ast)$ provided $(\frak u<\frak g)$, and every space with the property $\bigcup_{\operatorname{fin}}(\Cal O, \operatorname{T}^\ast)$ is Hurewicz provided $(\operatorname{Depth}^+([\omega]^{\aleph_0})\leq \frak b)$. Combining this with the results proven in cited literature, we settle all questions whether (it is consistent that) the properties $\text{\mathsf P}$ and $\text{\mathsf Q}$ [do not] coincide, where $\text{\mathsf P}$ and $\text{\mathsf Q}$ run over $\bigcup_{\operatorname{fin}}(\Cal O,\Gamma )$, $\bigcup_{\operatorname{fin}}(\Cal O, \operatorname{T})$, $\bigcup_{\operatorname{fin}}(\Cal O, \operatorname{T}^\ast)$, $\bigcup_{\operatorname{fin}}(\Cal O, \Omega )$, and $\bigcup_{\operatorname{fin}}(\Cal O, \Cal O)$. (English) |
Keyword:
|
selection principle |
Keyword:
|
semifilter |
Keyword:
|
small cardinals |
MSC:
|
03Axx |
MSC:
|
03E17 |
MSC:
|
03E35 |
idZBL:
|
Zbl 1150.03016 |
idMR:
|
MR2281015 |
. |
Date available:
|
2009-05-05T16:59:23Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119614 |
. |
Related article:
|
http://dml.cz/handle/10338.dmlcz/119546 |
. |
Reference:
|
[1] Banakh T., Zdomsky L.: Coherence of semifilters; http://www.franko.lviv.ua/faculty/mechmat/Departments/Topology/ booksite.html.. |
Reference:
|
[2] Banakh T., Zdomsky L.: Selection principles and infinite games on multicovered spaces and their applications.in preparation. |
Reference:
|
[3] Bartoszyński T., Shelah S., Tsaban B.: Additivity properties of topological diagonalizations.J. Symbolic Logic 68 (2003), 1254-1260; (Full version: http://arxiv.org/abs/math.LO/0112262). Zbl 1071.03031, MR 2017353 |
Reference:
|
[4] Blass A.: Combinatorial cardinal characteristics of the continuum.in Handbook of Set Theory (M. Foreman et al., Eds.), to appear. MR 2768685 |
Reference:
|
[5] Chaber J., Pol R.: A remark on Fremlin-Miller theorem concerning the Menger property and Michael concentrated sets.preprint. |
Reference:
|
[6] Dordal P.: A model in which the base-matrix tree cannot have cofinal branches.J. Symbolic Logic 52 (1987), 651-664. Zbl 0637.03049, MR 0902981 |
Reference:
|
[7] Dow A.: Set theory in topology.in Recent Progress in General Topology (M. Hušek et al., Eds.), Elsevier Sci. Publ., Amsterdam, 1992, pp.168-197. Zbl 0796.54001, MR 1229125 |
Reference:
|
[8] Miller A., Fremlin D.: On some properties of Hurewicz, Menger, and Rothberger.Fund. Math. 129 (1988), 17-33. Zbl 0665.54026, MR 0954892 |
Reference:
|
[9] Gerlits J., Nagy Zs.: Some properties of $C(X)$, I.Topology Appl. 14 2 (1982), 151-1613. Zbl 0503.54020, MR 0667661 |
Reference:
|
[10] Hurewicz W.: Über die Verallgemeinerung des Borelschen Theorems.Math. Z. 24 (1925), 401-421. |
Reference:
|
[11] Just W., Miller A., Scheepers M., Szeptycki S.: The combinatorics of open covers II.Topology Appl. 73 (1996), 241-266. Zbl 0870.03021, MR 1419798 |
Reference:
|
[12] Laflamme C.: Equivalence of families of functions on natural numbers.Trans. Amer. Math. Soc. 330 (1992), 307-319. MR 1028761 |
Reference:
|
[13] Marczewski E. (Szpilrajn): The characteristic function of a sequence of sets and some of its applications.Fund. Math. 31 (1938), 207-233. |
Reference:
|
[14] Menger K.: Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberichte.Abt. 2a, Mathematic, Astronomie, Physic, Meteorologie und Mechanic (Wiener Akademie) 133 (1924), 421-444. |
Reference:
|
[15] Scheepers M.: Combinatorics of open covers I: Ramsey Theory.Topology Appl. 69 (1996), 31-62. Zbl 0848.54018, MR 1378387 |
Reference:
|
[16] Shelah S., Tsaban B.: Critical cardinalities and additivity properties of combinatorial notions of smallness.J. Appl. Anal. 9 (2003), 149-162; http://arxiv.org/abs/math.LO/0304019. Zbl 1052.03026, MR 2021285 |
Reference:
|
[17] Solomon R.: Families of sets and functions.Czechoslovak Math. J. 27 (1977), 556-559. Zbl 0383.04002, MR 0457218 |
Reference:
|
[18] Talagrand M.: Filtres: Mesurabilité, rapidité, propriété de Baire forte.Studia Math. 74 (1982), 283-291. MR 0683750 |
Reference:
|
[19] Tsaban B.: Selection principles and the minimal tower problem.Note Mat. 22 2 (2003), 53-81; http://arxiv.org/abs/math.LO/0105045. MR 2112731 |
Reference:
|
[20] Tsaban B. (eds.): .SPM Bulletin 3 (2003; http://arxiv.org/abs/math.GN/0303057). Zbl 1071.03031 |
Reference:
|
[21] Tsaban B., Zdomsky L.: Scales, fields, and a problem of Hurewicz.submitted to J. Amer. Math. Soc.; http://arxiv.org/abs/math.GN/0507043. MR 2421163 |
Reference:
|
[22] Vaughan J.: Small uncountable cardinals and topology.in Open Problems in Topology (J. van Mill, G.M. Reed, Eds.), Elsevier Sci. Publ., Amsterdam, 1990, pp.195-218. MR 1078647 |
Reference:
|
[23] Zdomsky L.: A semifilter approach to selection principles.Comment. Math. Univ. Carolin. 46 (2005), 525-539; http://arxiv.org/abs/math.GN/0412498. Zbl 1121.03060, MR 2174530 |
. |