Previous |  Up |  Next

Article

Title: Strong boundedness and algebraically closed groups (English)
Author: Majcher-Iwanow, Barbara
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 2
Year: 2007
Pages: 205-209
.
Category: math
.
Summary: Let $G$ be a non-trivial algebraically closed group and $X$ be a subset of $G$ generating $G$ in infinitely many steps. We give a construction of a binary tree associated with $(G,X)$. Using this we show that if $G$ is $\omega_1$-existentially closed then it is strongly bounded. (English)
Keyword: strongly bounded groups
Keyword: existentially closed groups
MSC: 20A15
MSC: 20E08
MSC: 20F65
idZBL: Zbl 1174.20011
idMR: MR2338088
.
Date available: 2009-05-05T17:02:16Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119650
.
Reference: [1] Bergman G.: Generating infinite symmetric groups.Bull. London Math. Soc. 38 (2006), 429-440. Zbl 1103.20003, MR 2239037
Reference: [2] de Cornulier Y.: Strongly bounded groups and infinite powers of finite groups.Comm. Algebra 34 (2006), 2337-2345. Zbl 1125.20023, MR 2240370
Reference: [3] de la Harpe P., Valette A.: La propriété (T) de Kazhdan pour les groupes localement compacts.Astérisque 175, SMF, 1989. Zbl 0759.22001
Reference: [4] Hodges W.: Building Models by Games.Cambridge University Press, Cambridge, 1985. Zbl 0569.03015, MR 0812274
Reference: [5] Hodges W., Hodkinson I., Lascar D., Shelah S.: The small index property for $ømega$-stable $ømega$-categorical structures and for the random graph.J. London Math. Soc. (2) 48 (1993), 204-218. Zbl 0788.03039, MR 1231710
Reference: [6] Ivanov A.: Strongly bounded automorphism groups.Colloq. Math. 105 (2006), 57-67. Zbl 1098.20003, MR 2242499
Reference: [7] Kechris A., Rosendal Ch.: Turbulence, amalgamation and generic automorphisms of homogeneous structures.to appear in Proc. London Math. Soc. (arXiv:math.LO/0409567 v3 18 Oct 2004). Zbl 1118.03042, MR 2308230
Reference: [8] Macintyre A.: Model completeness.in: Handbook of Mathematical Logic (edited by Jon Barwise), North-Holland, Amsterdam, 1977, pp.139-180. Zbl 0317.02065, MR 0457132
Reference: [9] Scott W.R.: Algebraically closed groups.Proc. Amer. Math. Soc. 2 (1951), 118-121. Zbl 0043.02302, MR 0040299
Reference: [10] Ziegler M.: Algebraisch abgeschlossene Gruppen.in: World Problems II (edited by S. Adian et al.), North-Holland, 1980, pp.449-576. Zbl 0451.20001, MR 0579957
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-2_2.pdf 184.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo