Previous |  Up |  Next

Article

Title: Club-guessing, good points and diamond (English)
Author: Matet, Pierre
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 2
Year: 2007
Pages: 211-216
.
Category: math
.
Summary: Shelah's club-guessing and good points are used to show that the two-cardinal diamond principle $\lozenge_{\kappa,\lambda}$ holds for various values of $\kappa$ and $\lambda$. (English)
Keyword: $P_\kappa(\lambda)$
Keyword: diamond principle
MSC: 03E05
idZBL: Zbl 1199.03031
idMR: MR2338089
.
Date available: 2009-05-05T17:02:21Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119651
.
Reference: [1] Cummings J., Foreman M., Magidor M.: Canonical structure in the universe of set theory, part one.Ann. Pure Appl. Logic 129 (2004), 211-243. MR 2078366
Reference: [2] Donder H.-D., Matet P.: Two cardinal versions of diamond.Israel J. Math. 83 (1993), 1-43. Zbl 0798.03047, MR 1239715
Reference: [3] Foreman M., Magidor M.: Mutually stationary sequences of sets and the non-saturation of the non-stationary ideal on $\Cal P_\kappa(\lambda)$.Acta Math. 186 (2001), 271-300. MR 1846032
Reference: [4] Jech T.J.: Some combinatorial problems concerning uncountable cardinals.Ann. Math. Logic 5 (1973), 165-198. Zbl 0262.02062, MR 0325397
Reference: [5] Kojman M.: The $A, B, C$ of pcf: a companion to pcf theory, part I.1995, unpublished.
Reference: [6] Matet P.: Concerning stationary subsets of $[\lambda]^{<\kappa}$.in: Set Theory and its Applications (J. Steprāns and S. Watson, eds.), Lecture Notes in Mathematics 1401, Springer, Berlin, 1989, pp.119-127. MR 1031769
Reference: [7] Matet P.: Game ideals.preprint. MR 2502486
Reference: [8] Shioya M.: Splitting $\Cal P_\kappa\lambda$ into maximally many stationary sets.Israel J. Math. 114 (1999), 347-357. Zbl 0955.03047, MR 1738689
Reference: [9] Solovay R.M.: Real-valued measurable cardinals.in: Axiomatic Set Theory (D.S. Scott, ed.), Proceedings of Symposia in Pure Mathematics, vol. 13, part 1, American Mathematical Society, Providence, 1971, pp.397-428. Zbl 0222.02078, MR 0290961
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-2_3.pdf 199.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo