Previous |  Up |  Next

Article

Keywords:
$P_\kappa(\lambda)$; diamond principle
Summary:
Shelah's club-guessing and good points are used to show that the two-cardinal diamond principle $\lozenge_{\kappa,\lambda}$ holds for various values of $\kappa$ and $\lambda$.
References:
[1] Cummings J., Foreman M., Magidor M.: Canonical structure in the universe of set theory, part one. Ann. Pure Appl. Logic 129 (2004), 211-243. MR 2078366
[2] Donder H.-D., Matet P.: Two cardinal versions of diamond. Israel J. Math. 83 (1993), 1-43. MR 1239715 | Zbl 0798.03047
[3] Foreman M., Magidor M.: Mutually stationary sequences of sets and the non-saturation of the non-stationary ideal on $\Cal P_\kappa(\lambda)$. Acta Math. 186 (2001), 271-300. MR 1846032
[4] Jech T.J.: Some combinatorial problems concerning uncountable cardinals. Ann. Math. Logic 5 (1973), 165-198. MR 0325397 | Zbl 0262.02062
[5] Kojman M.: The $A, B, C$ of pcf: a companion to pcf theory, part I. 1995, unpublished.
[6] Matet P.: Concerning stationary subsets of $[\lambda]^{<\kappa}$. in: Set Theory and its Applications (J. Steprāns and S. Watson, eds.), Lecture Notes in Mathematics 1401, Springer, Berlin, 1989, pp.119-127. MR 1031769
[7] Matet P.: Game ideals. preprint. MR 2502486
[8] Shioya M.: Splitting $\Cal P_\kappa\lambda$ into maximally many stationary sets. Israel J. Math. 114 (1999), 347-357. MR 1738689 | Zbl 0955.03047
[9] Solovay R.M.: Real-valued measurable cardinals. in: Axiomatic Set Theory (D.S. Scott, ed.), Proceedings of Symposia in Pure Mathematics, vol. 13, part 1, American Mathematical Society, Providence, 1971, pp.397-428. MR 0290961 | Zbl 0222.02078
Partner of
EuDML logo