Article
Keywords:
Chebyshev radius; centerable subsets and $L^1 $-predual spaces
Summary:
In this note, we prove that a real or complex Banach space $X$ is an $L^1$-predual space if and only if every four-point subset of $X$ is centerable. The real case sharpens Rao's result in [{\it Chebyshev centers and centerable sets\/}, Proc. Amer. Math. Soc. {\bf 130} (2002), no. 9, 2593--2598] and the complex case is closely related to the characterizations of $L^1$-predual spaces by Lima [{\it Complex Banach spaces whose duals are $L_1$-spaces\/}, Israel J. Math. {\bf 24} (1976), no. 1, 59--72].
References:
                        
[1] Bandyopadhyay P., Rao T.S.S.R.K.: 
Central subspaces of Banach spaces. J. Approx. Theory 103 (2000), 206-222. 
MR 1749962 | 
Zbl 0965.46005[2] Davis W.J.: 
A characterization of $\Cal P_1$ spaces. J. Approx. Theory 21 (1977), 315-318. 
MR 0454592 | 
Zbl 0373.46034[4] Holmes R.B.: 
A course on optimization and best approximation. Lecture Notes in Math., Vol. 257, Springer, Berlin, 1972. 
MR 0420367 | 
Zbl 0235.41016[5] Hustad O.: 
Intersection properties of balls in complex Banach spaces whose dual are $L^1$-spaces. Acta Math. 132 (1974), 282-313. 
MR 0388049[6] Lacey H.E.: 
The isometric theory of classical Banach spaces. Grundlehren Math. Wiss., Band 208, Springer, New York-Heidelberg, 1974. 
MR 0493279 | 
Zbl 0285.46024[7] Lima A.: 
Complex Banach spaces whose duals are $L_1$-spaces. Israel J. Math. 24 (1976), 1 59-72. 
MR 0425584 | 
Zbl 0334.46014[8] Lima A.: 
Intersection properties of balls and subspaces in Banach spaces. Trans. Amer. Math. Soc. 227 (1977), 1-62. 
MR 0430747 | 
Zbl 0347.46017[9] Lindenstrauss J.: 
Extension of compact operators. Mem. Amer. Math. Soc., Vol. 48, Provindence, 1964. 
MR 0179580 | 
Zbl 0141.12001[10] Rao T.S.S.R.K.: 
Chebyshev centers and centerable sets. Proc. Amer. Math. Soc. 130 (2002), 9 2593-2598. 
MR 1900866