Previous |  Up |  Next

Article

Title: Characterizations of $L^1$-predual spaces by centerable subsets (English)
Author: Duan, Yanzheng
Author: Lin, Bor-Luh
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 2
Year: 2007
Pages: 239-243
.
Category: math
.
Summary: In this note, we prove that a real or complex Banach space $X$ is an $L^1$-predual space if and only if every four-point subset of $X$ is centerable. The real case sharpens Rao's result in [{\it Chebyshev centers and centerable sets\/}, Proc. Amer. Math. Soc. {\bf 130} (2002), no. 9, 2593--2598] and the complex case is closely related to the characterizations of $L^1$-predual spaces by Lima [{\it Complex Banach spaces whose duals are $L_1$-spaces\/}, Israel J. Math. {\bf 24} (1976), no. 1, 59--72]. (English)
Keyword: Chebyshev radius
Keyword: centerable subsets and $L^1 $-predual spaces
MSC: 41A65
MSC: 46B20
idZBL: Zbl 1199.41181
idMR: MR2338092
.
Date available: 2009-05-05T17:02:36Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119654
.
Reference: [1] Bandyopadhyay P., Rao T.S.S.R.K.: Central subspaces of Banach spaces.J. Approx. Theory 103 (2000), 206-222. Zbl 0965.46005, MR 1749962
Reference: [2] Davis W.J.: A characterization of $\Cal P_1$ spaces.J. Approx. Theory 21 (1977), 315-318. Zbl 0373.46034, MR 0454592
Reference: [3] Hanner O.: Intersections of translates of convex bodies.Math. Scand. 4 (1956), 65-87. Zbl 0070.39302, MR 0082696
Reference: [4] Holmes R.B.: A course on optimization and best approximation.Lecture Notes in Math., Vol. 257, Springer, Berlin, 1972. Zbl 0235.41016, MR 0420367
Reference: [5] Hustad O.: Intersection properties of balls in complex Banach spaces whose dual are $L^1$-spaces.Acta Math. 132 (1974), 282-313. MR 0388049
Reference: [6] Lacey H.E.: The isometric theory of classical Banach spaces.Grundlehren Math. Wiss., Band 208, Springer, New York-Heidelberg, 1974. Zbl 0285.46024, MR 0493279
Reference: [7] Lima A.: Complex Banach spaces whose duals are $L_1$-spaces.Israel J. Math. 24 (1976), 1 59-72. Zbl 0334.46014, MR 0425584
Reference: [8] Lima A.: Intersection properties of balls and subspaces in Banach spaces.Trans. Amer. Math. Soc. 227 (1977), 1-62. Zbl 0347.46017, MR 0430747
Reference: [9] Lindenstrauss J.: Extension of compact operators.Mem. Amer. Math. Soc., Vol. 48, Provindence, 1964. Zbl 0141.12001, MR 0179580
Reference: [10] Rao T.S.S.R.K.: Chebyshev centers and centerable sets.Proc. Amer. Math. Soc. 130 (2002), 9 2593-2598. MR 1900866
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-2_6.pdf 175.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo