Previous |  Up |  Next

Article

Title: Quasi-concave copulas, asymmetry and transformations (English)
Author: Alvoni, Elisabetta
Author: Papini, Pier Luigi
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 2
Year: 2007
Pages: 311-319
.
Category: math
.
Summary: In this paper we consider a class of copulas, called quasi-concave; we compare them with other classes of copulas and we study conditions implying symmetry for them. Recently, a measure of asymmetry for copulas has been introduced and the maximum degree of asymmetry for them in this sense has been computed: see Nelsen R.B., {\it Extremes of nonexchangeability\/}, Statist. Papers {\bf 48} (2007), 329--336; Klement E.P., Mesiar R., {\it How non-symmetric can a copula be\/}?, Comment. Math. Univ. Carolin. {\bf 47} (2006), 141--148. Here we compute the maximum degree of asymmetry that quasi-concave copulas can have; we prove that the supremum of $\{|C(x,y)-C(y,x)|; x,y$ in $[0,1]$; $C$ is quasi-concave\} is $\frac{1}{5}$. Also, we show by suitable examples that such supremum is a maximum and we indicate copulas for which the maximum is achieved. Moreover, we show that the class of quasi-concave copulas is preserved by simple transformations, often considered in the literature. (English)
Keyword: copula
Keyword: quasi-concave
Keyword: asymmetry
MSC: 26B35
MSC: 62H05
idZBL: Zbl 1195.62074
idMR: MR2338099
.
Date available: 2009-05-05T17:03:11Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119661
.
Reference: [1] Durante F.: Solution of an open problem for associative copulas.Fuzzy Sets and Systems 152 (2005), 411-415. Zbl 1065.03035, MR 2138520
Reference: [2] Genest C., Ghoudi K., Rivest L.-P.: Discussion on ``Understanding relationships using copulas'' by E. Frees and E. Valdez.N. Am. Actuar. J. 2 (1999), 143-149. MR 2011244
Reference: [3] Klement E.P., Mesiar R.: How non-symmetric can a copula be?.Comment. Math. Univ. Carolin. 47 (2006), 141-148. Zbl 1150.62027, MR 2223973
Reference: [4] Klement E.P., Mesiar R., Pap E.: Different types of continuity of triangular norms revisited.New Math. Nat. Comput. 1 (2005), 1-17. Zbl 1081.26024, MR 2158962
Reference: [5] Nelsen R.B.: An Introduction to Copulas.2nd edition, Springer, New York, 2006. Zbl 1152.62030, MR 2197664
Reference: [6] Nelsen R.B.: Extremes of nonexchangeability.Statist. Papers 48 (2007), 329-336. Zbl 1110.62071, MR 2295821
Reference: [7] Robert A.W., Varberg D.E.: Convex Functions.Academic Press, New York, 1973. MR 0442824
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-2_13.pdf 198.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo