Previous |  Up |  Next

Article

Title: Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions (English)
Author: Nabongo, Diabate
Author: Boni, Théodore K.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 3
Year: 2008
Pages: 463-475
.
Category: math
.
Summary: This paper concerns the study of the numerical approximation for the following boundary value problem: $$ \cases u_t(x,t)-u_{xx}(x,t) = -u^{-p}(x,t), & 0<x<1, t>0, \ u_{x}(0,t)=0, & u(1,t)=1, t>0, \ u(x,0)=u_{0}(x)>0, & 0\leq x \leq 1, \endcases $$ where $p>0$. We obtain some conditions under which the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also establish the convergence of the semidiscrete quenching time. Finally, we give some numerical experiments to illustrate our analysis. (English)
Keyword: semidiscretizations
Keyword: discretizations
Keyword: heat equations
Keyword: quenching
Keyword: semidiscrete quenching time
Keyword: convergence
MSC: 35B40
MSC: 35K20
MSC: 35K55
MSC: 35K91
MSC: 65M06
idZBL: Zbl 1212.35217
idMR: MR2490440
.
Date available: 2009-05-05T17:12:24Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119736
.
Reference: [1] Abia L.M., López-Marcos J.C., Martinez J.: On the blow-up time convergence of semidiscretizations of reaction-diffusion equations.Appl. Numer. Math. 26 (1998), 399-414. MR 1612360, 10.1016/S0168-9274(97)00105-0
Reference: [2] Acker A., Kawohl B.: Remarks on quenching.Nonlinear Anal. 13 (1989), 53-61. Zbl 0676.35021, MR 0973368, 10.1016/0362-546X(89)90034-5
Reference: [3] Boni T.K.: Extinction for discretizations of some semilinear parabolic equations.C.R. Acad. Sci. Paris Sér. I Math. 333 (2001), 795-800. Zbl 0999.35004, MR 1868956, 10.1016/S0764-4442(01)02078-X
Reference: [4] Boni T.K.: On quenching of solutions for some semilinear parabolic equations of second order.Bull. Belg. Math. Soc. Simon Stevin 7 (2000), 73-95. Zbl 0969.35077, MR 1741748
Reference: [5] Fila M., Kawohl B., Levine H.A.: Quenching for quasilinear equations.Comm. Partial Differential Equations 17 (1992), 593-614. Zbl 0801.35057, MR 1163438
Reference: [6] Guo J.S., Hu B.: The profile near quenching time for the solution of a singular semilinear heat equation.Proc. Edinburgh Math. Soc. 40 (1997), 437-456. Zbl 0903.35007, MR 1475908
Reference: [7] Guo J.: On a quenching problem with Robin boundary condition.Nonlinear Anal. 17 (1991), 803-809. MR 1131490, 10.1016/0362-546X(91)90154-S
Reference: [8] Levine H.A.: Quenching, nonquenching and beyond quenching for solutions of some parabolic equations.Annali Mat. Pura Appl. 155 (1990), 243-260. MR 1042837
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-3_8.pdf 233.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo