Previous |  Up |  Next

Article

Title: Further properties of 1-sequence-covering maps (English)
Author: An, Tran Van
Author: Tuyen, Luong Quoc
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 3
Year: 2008
Pages: 477-484
.
Category: math
.
Summary: Some relationships between $1$-sequence-covering maps and weak-open maps or sequence-covering $s$-maps are discussed. These results are used to generalize a result from Lin S., Yan P., {\it Sequence-covering maps of metric spaces\/}, Topology Appl. {\bf 109} (2001), 301--314. (English)
Keyword: weak base
Keyword: $sn$-network
Keyword: sequence-covering
Keyword: $1$-sequence-covering
Keyword: weak-open
Keyword: $\pi$-$s$-map
MSC: 54C10
MSC: 54D65
MSC: 54E40
MSC: 54E99
idZBL: Zbl 1212.54092
idMR: MR2490441
.
Date available: 2009-05-05T17:12:30Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119737
.
Reference: [1] Arhangel'skii A.V.: Mappings and spaces.Russian Math. Surveys 21 4 (1966), 115-162. MR 0227950
Reference: [2] Davis S.W.: More on Cauchy conditions.Topology Proc. 9 (1984), 31-36. Zbl 0561.54020, MR 0781549
Reference: [3] Engelking R.: General Topology.PWN-Polish Scientific Publishers, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [4] Franklin S.P.: Spaces in which sequences suffice.Fund. Math. 57 (1965), 107-115. Zbl 0132.17802, MR 0180954
Reference: [5] Ge X.: Spaces with a locally countable $sn$-network.Lobachevskii J. Math. 26 (2007), 33-49. Zbl 1140.54009, MR 2396700
Reference: [6] Ge Y.: Characterizations of $sn$-metrizable spaces.Publ. Inst. Math. (Beograd) (N.S.) 74 (88) (2003), 121-128. MR 2066998, 10.2298/PIM0374121G
Reference: [7] Ge Y.: Spaces with countable $sn$-networks.Comment. Math. Univ. Carolin. 45 1 (2004), 169-176. Zbl 1098.54025, MR 2076868
Reference: [8] Gruenhage G., Michael E., Tanaka Y.: Spaces determined by point-countable covers.Pacific J. Math. 113 2 (1984), 303-332. Zbl 0561.54016, MR 0749538, 10.2140/pjm.1984.113.303
Reference: [9] Ikeda Y., Tanaka Y.: Spaces having star-countable $k$-networks.Topology Proc. 18 (1993), 107-132. Zbl 0829.54018, MR 1305126
Reference: [10] Ikeda Y., Liu C., Tanaka Y.: Quotient compact images of metric spaces, and related matters.Topology Appl. 122 1-2 (2002), 237-252. Zbl 0994.54015, MR 1919303, 10.1016/S0166-8641(01)00145-6
Reference: [11] Li Z.: On $\pi$-$s$-images of metric spaces.Int. J. Math. Math. Sci. 7 (2005), 1101-1107. Zbl 1082.54023, MR 2170507, 10.1155/IJMMS.2005.1101
Reference: [12] Li Z., Lin S.: On the weak-open images of metric spaces.Czechoslovak Math. J. 54 (2004), 939-400. Zbl 1080.54509, MR 2059259
Reference: [13] Lin S.: Generalized Metric Spaces and Mappings.Chinese Science Press, Beijing, 1995 (Chinese). MR 1375020
Reference: [14] Lin S.: On sequence-covering $s$-mappings.Adv. Math. (China) 25 6 (1996), 548-551. Zbl 0864.54026, MR 1453163
Reference: [15] Lin S.: Point-Countable Covers and Sequence-Covering Mappings.Chinese Science Press, Beijing, 2002. Zbl 1004.54001, MR 1939779
Reference: [16] Lin S., Yan P.: Sequence-covering maps of metric spaces.Topology Appl. 109 (2001), 301-314. Zbl 0966.54012, MR 1807392, 10.1016/S0166-8641(99)00163-7
Reference: [17] Liu C.: On weak bases.Topology Appl. 150 (2005), 91-99. Zbl 1081.54026, MR 2133670, 10.1016/j.topol.2004.11.008
Reference: [18] O'Meara P.: On paracompactness in function spaces with the compact-open topology.Proc. Amer. Math. Soc. 29 (1971), 183-189. Zbl 0214.21105, MR 0276919, 10.2307/2037695
Reference: [19] Michael E.: $\aleph_0$-spaces.J. Math. Mech. 15 (1966), 983-1002. MR 0206907
Reference: [20] Siwiec F.: On defining a space by a weak base.Pacific J. Math. 52 (1974), 233-245. Zbl 0285.54022, MR 0350706, 10.2140/pjm.1974.52.233
Reference: [21] Tanaka Y.: Point-countable covers and $k$-networks.Topology Proc. 12 (1987), 327-349. Zbl 0676.54035, MR 0991759
Reference: [22] Tanaka Y.: Theory of $k$-networks II.Questions Answers Gen. Topology 19 (2001), 27-46. Zbl 0970.54023, MR 1815344
Reference: [23] Tanaka Y., Ge Y.: Around quotient compact images of metric spaces, and symmetric spaces.Houston J. Math. 32 1 (2006), 99-117. Zbl 1102.54034, MR 2202355
Reference: [24] Yan P.: On strong sequence-covering compact mappings.Northeastern Math. J. 14 (1998), 341-344. Zbl 0927.54030, MR 1685267
Reference: [25] Xia S.: Characterizations of certain $g$-first countable spaces.Adv. Math. (China) 29 (2000), 61-64. Zbl 0999.54010, MR 1769127
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-3_9.pdf 208.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo